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Surface observations comprise a wide, non-expensive and reliable source of information about
the state of the near-surface planetary boundary layer (PBL). Operational data assimilation systems
have encountered several difficulties in effectively assimilating them, among others due to their
local-scale representativeness, the transient coupling between the surface and the atmosphere
aloft and the balance constraints usually used.

A long-term goal of this work is to find an efficient system for probabilistic PBL nowcasting that
can be employed wherever surface observations are present. Earlier work showed that surface
observations can be an important source of information with a single column model (SCM) and an
ensemble filter (EF). Here we investigate several questions that arise from ours and related studies
using SCM and EF to estimate the state of the PBL:

•What is the necessary complexity or sophistication of the model and assimilation scheme?
•Would the resulting nowcast PBL profiles be as accurate when assimilating the information
in the surface observations into background profiles using simpler schemes than an EF?
•Do flow-dependent covariances derived from an SCM (including externally-imposed
horizontal advection) ensemble contain the needed 3D flow information?
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Filter performance

 Radiation: Dudhia short-wave and RRTM long-wave

schemes (in particular to improve night simulations

when radiative cooling can be important in the PBL).

 Externally-imposed horizontal advection: upstream

advection that relaxes the SCM state toward a

prescribed 3D state, e.g. WRF forecasts, on the

advective time scale.

 A state-augmentation approach: advection speed is

dynamically tuned with the surface observations

(simulating the effect of assimilating data in three

spatial dimensions) to diminish unrealistically rapid

growth in ensemble spread due to too wide variance

in the WRF forecasts.

 Vertical grid: 81 vertical levels on a vertically-

stretched column with model top at approximately

16 km to properly simulate radiative processes.

 SCM resolved dynamics: Momentum, 

thermodynamic and moisture equations.

 SCM forcing and closure: vertical 

turbulence, atmospheric surface layer, 

and land-surface as in WRF (ARW) 

version 2.2.1 (MYJ, similarity, Noah-LSM)

 EF: The SCM is coupled to the NCAR/DART system, default ensemble adjustment Kalman filter

(EAKF, a square-root filter and implemented with serial observation processing).

 Vertical covariance localization: with an element-wise multiplication of a fifth-order piece-wise

rational function (Gaspari and Cohn 1999) and the background error covariance estimates.

 Ensembles of initial conditions, large scale forcing, advective tendencies and surface radiation (if

not explicitly computed by the SCM): imposed by starting with a WRF forecast column closest to

the location of the surface observations for a given day and hour, then perturbing it with the

scaled difference between that forecast and a randomly selected archived forecast from the same

season; the scaling of the difference is drawn randomly from N(0; 1).

Experiment period and location: 3 May – 15 July 2003, over the Atmospheric Radiation Measurement
(ARM) Central Facility near Lamont, Oklahoma.
SCM initialization and forcing (100 members), CD first guess and climatological covariances: Use of
archived runs of the ARW version 2.1 with Δx = 4 km, initialized at 00 UTC (19 LDT) and coinciding with
the experiment period.
Observation-error variances: 1 K2, 10-6 kg2kg-2 and, 2 m2s-2 for temperature, mixing ratio and wind
components, respectively.

Ratio of ensemble spread (sum of std dev squared of the ensemble and 
observation variance) to MSE in 30-min SCM/EF surface forecasts. Circles and 
squares are results of night and day time experiments respectively. Analysis 
cycles numbered 1–4 correspond either to 2300-0030 LDT and 1100-1230 LDT 
for night or day time experiments respectively. Error bars represent 90% 
confidence intervals derived using the BCa bootstrapping technique.

SCM/EF improvement over WRF CD improvement over WRF

SCM/EF

Impact of assimilation on SCM/EF probabilistic skill

 Superior deterministic skill from the SCM/EF results during night when flow-dependent covariances are more accurate than  
climatological covariances. Further improved may be achieved  through better vertical localization or sampling.

 CD is deterministically more skillful for temperature and moisture profiles during daytime because the SCM-PBL 
parameterization yields biased covariances, illustrating the need for explicit bias removal when assimilating observations
into biased background estimates. Some of CD features could be used in a simple bias correction scheme for the SCM/EF

 The SCM/EF is most probabilistically skillful because:
(a) the EF covariances accommodate large seasonal variability (not shown here)
(b) the 30-min error persistence assumption fails during nighttime (not shown here)
(c) vertical error covariance estimates from archived forecasts are generally poor estimates of actual error 

covariances. 
 A deterministic and probabilistic factor separation analysis of the SCM/EF shows the relative importance of surface 

assimilation, radiation parameterization, and advection (not shown here):
(a)   Results confirm surface assimilation as the most important factor
(b)   A factor can be deterministically beneficial and probabilistically detrimental, or vice versa, depending on 

its role in reducing mean error or improving sharpness
(c)   Assimilation results in notable improvement for nowcasts of low-level jet structures.
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CD

CD: WRF vs. error covariances

SCM/EF: cases of biased estimations

Differences in MAE between 
30-min SCM/EF-forecasts and their 
corresponding WRF-forecast profiles

Bold lines  experiment results
Thin lines  90% confidence intervals

Decomposition of squared-errors differences 
between 30-min SCM/EF forecasts minus their 

corresponding WRF-forecast profiles

Differences in MAE between 
30-min CD-forecasts and their 

corresponding WRF forecast profiles

Adjustment factor in CD,               . 
Solid lines: using WRF-observations 

error covariances. 
Dashed lines: using WRF covariances.

SCM/EF, Brier Skill Scores, night experiments

Contribution from surface assimilation to brier-skill score (BSS) in 30-min SCM/EF forecasts• A deterministic mesoscale forecast (3D WRF) is adjusted using surface-atmosphere 3D-
climatological covariances (         , calculated within the 3D WRF sample and conditioned on the local 
time of day) and surface-forecast errors  (       ) where surface observations are available. 
• Surface-error model: 30-min persistence. 
• It can be interpreted as an optimal interpolation technique based on climatological covariances
and a 30-min persistence error model:

o Observation increment:

o Climatological forecast variance: 

o Observation error variance:           (assigned as in the EF)

o State increment:                            (the adjustment applied to a WRF-column 
state variable)
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• The adjusted profile is dressed with the in-sample uncertainty distribution scaled by the most  
recent observed error to provide a probabilistic nowcast.
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