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Motivation

Issues on which EnKF still have to catch up with 4D-Var:

Initialization of the analysis increment, internally in the
analysis, e.g., by a weak (balance) constraint
Direct minimization of the cost function, which allows for

The introduction of balance constraints
Accounting for nonlinearities in the observation operator
Variational QC
Non-Gaussian Error Statistics
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Current Approach for Initialization (Finalization) in
EnKF

Summary of Current Approach
An (external) digital filter (finalization) is applied to all
background ensemble members
It is hoped that the analysis will be balanced, because the
analysis increment is obtained in the space of ensemble
perturbations that are spanned by the filtered ensemble
members
We all do it, because it improves analysis accuracy

Potential Problems with Current Approach:
It filters the full model solution, not only the increment: it
affects the analysis not only through the analysis
increment, but also through the background mean
The filtered background is not constrained by the
observations at the previous time
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Illustration of Problem with The Semidiurnal Tidal
Wave

Semidiurnal Tidal Wave:
A 1 hPa amplitude semidiurnal oscillation in the surface
pressure in the Tropics
The most regular periodic motion in the atmosphere
A response of the atmosphere to the excitation due to the
absorption of solar radiation by ozone in the stratosphere.
This response travels in the form of a gravity wave
(Chapman and Lindzen 1970).
Any model that has stratospheric ozone as prognostic
variable can easily handle it

Results are from Satterfield and Szunyogh (2010,
MWR)–simulated observations of all atmospheric variables in
randomly selected atmospheric columns (10% observation
coverage)
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Time mean absolute error of surface pressure analysis
with no digital filter
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Time mean absolute error of surface pressure analysis
with digital filter

The error pattern suggests that we lost the semidiurnal tidal
wave from the analysis
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Fourier Spectrum of the Surface Pressure Analysis

The Fourier analysis confirms our suspicion
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: Filter

The filter wipes out the

semidiurnal tide
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Digital Filter as a Weak Constraint

Cost function with balance constraint:

J(δx) = Jb(δx) + Jo(δx) + Jc(δx)

where the analysis increment is δx = x̄a − x̄b

Introduction of the digital filter as a weak constraint
(Gustafsson 1992, Polavarapu et al. 2000, Gauthier and
Thepaut 2001):

Jc(δx) = (δx− δ̂x)T Q(δx− δ̂x),

Q is a metric and filtered increment, δ̂x, is defined by

δ̂x =
I∑

i=0

αiδx(ti),

Remark: In most EnKF implementation Jo(δx) is computed in a
4-D fashion
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How to Introduce the Weak Constraint into the
LETKF?

In the LETKF δx = Xbw, where Xb is the matrix of ensemble
background perturbations and w is a vector of weights. We can
write the constraint as

Jc(w) = wT (Xb − X̂b)T Q(Xb − X̂b)w,

We add this term to one of the following two cost functions
proposed in Hunt et al. (2007)
Option 1: (Nonlinear observation operator)

Jb+o(w) = (k−1)wT w+[yo−H(x̄b+Xbw)]T R−1[yo−H(x̄b+Xbw)].

Option 2: (Linearized observation operator: quadratic cost
function)

Jb+o(w) = (k − 1)wT w
+ [yo − ȳb − Ybw]T R−1[yo − ȳb − Ybw]
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Option I

Computation Algorithm:
1 Compute w̄a, the weight that defines the mean analysis, by

the direct minimization of the cost function
2 Compute the analysis covariance matrix Pa as the inverse

of the Hessian of the cost function at w̄a.
3 Compute the weights for the analysis perturbation from Pa

the usual way
Pros:

It takes into account the nonlinearity in the observation
operator
Nonlinear minimization can be done in parallel for each
grid point: most likely cheaper than a 4D-Var using global
direct minimization

Cons:
Complicates coding and code maintenance: H cannot be
pre-computed outside the analysis
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Option I

Computation Algorithm: Same as LETKF except that the
analysis error covariance matrix has to be modified as

Pa = [(k − 1)I + (Yb)T R−1Yb + (Xb − X̂b)T Q(Xb − X̂b)]−1.

Pros:
Can be implemented as a simple change in the LETKF
code

Remarks:
It does not require a direct minimization, but it may be
useful to code it with direct minimization if we plan to add
non-quadratic terms in the future, e.g., to introduce a
non-Gaussian backgroun term as in Harlim and Hunt
(2007)
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Conclusions

Initialization is an area where EnKF schemes can be
(easily?) improved
We have an idea of how to do it, but no results to show that
it actually works
Direct minimization holds promise of further improvements
for EnKF. But, code implementation may be challenging
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A Real-Life Tale for Young Scientists: Sometimes it
pays off to do research in science and technology...

Rudolf Kalman Receives the National Medal of Science and
Technology on October 7, 2009:
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