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Background Error Covariance Matrix 

• Diagonal of B and its weight relative to the diagonal of R 
determine the magnitude of the analysis increment 

• Off diagonal of B determines the spatial structure of the analysis 
increment 
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• Ensemble  
• Contains flow dependent errors 

• Variable in time and anisotropic 

• Estimated using the ensemble 

• Contains sampling error 

• Rank deficient 

 

• 3DVar 
• Constant in time 

• Usually isotropic and 
homogeneous 

• Estimated prior to the experiment 

• Intervariable correlations 
represented with dynamic 
constraint 

• Full rank 



Hybrid 4DEnVar 
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𝛿𝐱𝑡 = 𝛽𝑓𝛿𝐱𝑓 + 𝛽𝑒  𝛼𝑚 ∘ 𝐗𝑚
𝑒

𝑡

𝑀

𝑚=1

 

𝐽 𝛿𝐱𝑓, 𝛂 =
1

2
𝛿𝐱𝑓

𝑇
𝐁−1𝛿𝐱𝑓 +

1

2
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1

2
 𝐝𝑡 − 𝐇𝑡𝛿𝐱𝑡

𝑇𝐑−1 𝐝𝑡 − 𝐇𝑡𝛿𝐱𝑡
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Extended control variable : 

𝛽𝑓 2
+ 𝛽𝑒 2 = 1 

Minimize the cost function: 

𝛿𝐱 = 𝛿𝐱𝑓

𝛂
 

𝛽𝑓 = 1 

𝛽𝑒 = 1 

More  
fixed B 

More  
ensemble Pb 

𝛽𝑒 = 0 

𝛽𝑓 = 0 

Analysis increment δx: 

Weights βf and βe satisfy: 

f – fixed 
e – ensemble 

Lorenc 2003, Buehner 2005, Wang 2008a,b 



Hybrid 4DEnVar 
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Dynamic Constraint, Fixed 
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δ𝜒 = δ𝜒𝑢 + 𝑐δ𝜓 

δ𝑇 = 𝛿𝑇𝑢 + 𝐆δ𝜓 

δ𝑃 = 𝛿𝑃𝑢 + 𝛀δ𝜓 

• Wu et al 2002 
• Conventionally present in 3DVar 
• Represents the physical relationship between the 

variables 
• Magnitude is derived from climatological information 

 

𝚪 =

1 0 0 0 0
𝑐 1 0 0 0
𝐆 0 1 0 0
𝛀 0 0 1 0
0 0 0 0 1

 

𝐱 = 𝚪𝐳 

𝐱 =

𝜓
𝜒
𝑇
𝑃
𝑞

 
𝐳 =

𝜓

𝜒𝑢

𝑇𝑢

𝑃𝑢

𝑞

 

Mid-level G 



Covariance Matrix, Fixed 
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Dynamic Constraint, Ensemble 

• Multivariate Correlations 

– Ensembles provide these covariances 
• If the ensemble is large and properly represents reality, these 

covariances are suitable 

• If the ensemble is too small, the sampling error is large 

– Dynamic constraint can also provides these covariances 
within the ensemble 
• If ensemble is poor, the dynamic constraint could provide more 

useful, balanced information 

• Can provide covariances outside of the traditional physical 
localization radius 
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Variable Localization (Kang et al 2011) 

• If the ensemble is too small, sampling error is large 
– Covariances may exist between variables that should not be correlated 

• Implemented in LETKF through observation selection 
– For example, do not use T observations in the calculation of u analysis 
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CF C u v T P q 

CF 

C 

u 

v 

T 

P 

q 

Reproduced from  
Figure 1 of Kang et al 2011  

for the application of  
carbon data assimilation 

• What if one type of observation 
impacts two variables that we 
want to be uncorrelated? 



Objectives 

• Apply variable localization to the ensemble 
covariances using a cost function formulation 

• Apply the dynamic constraint to the ensemble 
covariances 

• When we combine the dynamic constraint and 
localization, we get two effects: 

– Localization eliminates spurious correlations  

– Then the constraint propagates the balanced information 
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𝐽 𝛿𝐱 α =
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𝛿𝐱𝑓

𝑇
𝐁−1𝛿𝐱𝑓 +

1

2
𝜶𝜓

𝑇
𝐋−1𝜶𝝍 +

1

2
𝜶𝜒

𝑇
𝐋−1𝜶𝝌

+
1

2
 𝐝𝑡 − 𝐇𝑡𝛿𝐱𝑡

𝑇𝐑−1 𝐝𝑡 − 𝐇𝑡𝛿𝐱𝑡

𝝉

𝑡=1

 

Variable Localization 
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𝛿𝐱 α =
𝛿𝐱𝑓

𝛂𝜓
𝛂𝜒

 

Control Vector: 

𝛿𝐱𝑡 = 𝛽𝑓𝛿𝐱𝑓 + 𝛽𝑒  𝜶𝝍,𝑚 ∘ 𝐗𝜓,𝑚
𝑒

𝑡

𝑀

𝑚=1

+ 𝛽𝑒  𝜶𝝌,𝑚 ∘ 𝐗𝜒,𝑚
𝑒

𝑡

𝑀

𝑚=1

 

Increment: 

Cost Function: 

• Specify multiple sets of weights for variable types we wish to be 
uncorrelated. For this case, variables are split into (ψ) and (χ, T, P, q). 



Dynamic Constraint, Ensemble 
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𝛿𝐱 = 𝚪 𝛽𝑓𝐳𝑓 + 𝛽𝑒  𝐳𝑚
𝑒 ∘ 𝐙𝑚

𝑒
𝑡

𝑀

𝑚=1

 

𝐙𝑚
𝑒

𝑡 = 𝚪−1 𝐗𝑚
𝑒
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𝐳 = 𝐳𝑓
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Same Control Variable: 

Transform the ensemble perturbations: 

𝛿𝐱 = 𝛽𝑓𝚪𝐳𝑓 + 𝛽𝑒  𝛼𝑚 ∘ 𝐗𝑚
𝑒

𝑡

𝑀

𝑚=1

 

Apply the dynamic constraint to the whole increment: 

𝚪 =

1 0 0 0 0
𝑐 1 0 0 0
𝐆 0 1 0 0
𝛀 0 0 1 0
0 0 0 0 1

 

Γ transforms between 
 the full and unbalanced 

variables:  

• Apply the dynamic constraint to the ensemble perturbations 
rather than the extended control variable. 



Constraint and Localization 
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No Constraint Constraint 

No Localization 

- X perturbations 

- Keeps Xψ/Xχ  ensemble 
covariances 

- Z perturbations 

- Keeps Zψ/Zχ ensemble 
covariances 

- Adds Xψ/Xχ statistical 
covariances 

Localization 

- X perturbations 

- Removes Xψ/Xχ ensemble 
covariances 

 

 

- Z perturbations 

- Removes Zψ/Zχ ensemble 
covariances 

- Adds Xψ/Xχ statistical 
covariances 



Covariance Matrix, Ensemble 
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Single T surface Observation, βe=1 
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No Localization 
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Model Description – SPEEDY 

• Molteni 2003 

• Model Description 

– Simplified Parameterizations,  

      primitivE-Equation DYnamics 

– Global atmospheric general circulation  

      model of intermediate complexity 

• Version 41 

– Provided by Fred Kucharski (ICTP) 

– 3 horizontal resolution options:  

     T30, T47, T63 

– 8 vertical levels 

• Output every hour (addition by Miyoshi and Greybush) 
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Experiment Set-Up 
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• Resolution: T63 Truth with T30 forecasts and analyses 

• Beta weighting: 25% Fixed, 75% Ensemble 

• Ensemble Size: 20 members 

• Inflation:  Fixed at 6%  

• Experiment length: 2 years (January 1982 – January 1984) 

• Observations: simulated radiosonde network and satellite observations 

Radiosonde Network (416 Stations) 

Observation Type Observation Error 

u 1 m/s 

v 1 m/s 

T 1 K 

P 100 Pa 

q 10-4 kg/kg 



Experiment Set-Up 

Simulated satellite observations 

• AIRS on Aqua and SeaWinds on Quikscat 

• 5 minute intervals with linear time interpolation to an hourly 
T63 truth 
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• AIRS:  
– T profile: 2 K error 

– q profile up to middle model 
level: 2x10-4 kg/kg error 

• SeaWinds: 

– u and v at lowest model level: 
1.5 m/s error 

Simulated AIRS Observations  for 6 Hours 



RMSE – Analysis Skill 
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RMSE compared to the nature run 

Large model bias in 
the stratosphere is 
greatly alleviated 
by the ensemble 

constraint 

Ensemble constraint has largest impact. 
 

Variable localization with the constraint provides additional value and 
produces the most accurate analysis in general. 

No Constr., No Loc. 
Constr., No Loc. 

No Constr.,       Loc. 
Constr.,       Loc. 



ACC – Forecast Skill 
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Upper level T 

Surface P 

Mid-level ψ 

Ensemble constraint 
produces largest 

increase in forecast skill. 

Global anomaly 
correlation coefficients 

with respect to the truth. 

Variable localization 
provides minor increase 

in forecast skill. 

No Constr., No Loc. 
Constr., No Loc. 

No Constr.,       Loc. 
Constr.,       Loc. 



Measure of Balance 
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To determine the impact on balance, we examine the surface pressure tendency, which should 
be reduced with more balanced analyses.  

According to this metric: 
• Ensemble constraint without variable localization provides the most balanced state 
• The case with the ensemble constraint and variable localization also appears well balanced 

No Constr., No Loc. 
Constr., No Loc. 

No Constr.,       Loc. 
Constr.,       Loc. 



Summary 

• Dynamic constraint  

– Provides additional information about the relationship between variables 
that the ensemble may overlook or was removed by spatial localization 

– Produces the largest impact in skill 

• Variable localization  

– Removes ensemble-provided correlations that may not be correct due to 
limited ensemble size 

– Provides additional skill, although not as much as the dynamic constraint 

• Using both methods simultaneously: 

– Remove unphysical, spurious correlation 

– Add physical, statistically-derived correlations to the ensemble 

• Results are promising within the SPEEDY context.  We recommend these 
methods be explored within a state-of-the-art system. 21 



Thank You 
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Back-up Slides 
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LETKF Variable Localization 
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𝐘𝜓 = 𝐇𝜓𝐗 𝜓 

𝐽 =
(𝑀 − 1)

2
𝐰𝜓
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𝑇𝐰𝜒 +
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Cost function: 

We split the increment into the stream function increment and the velocity potential 
increment, removing the correlation between the two. 

We rewrite the cost function: 

𝐰 ∈ ℝ2𝑀 

where 

𝐘𝜓 ∈ ℝ𝐿×𝑀 

Y() represents the projection from the ensemble onto the observations using just the 
variables ().  For example, for Yψ, the u observation type only contains information 
from the streamfunction. Yχ contains the information on that same observation from 
the velocity potential. 



LETKF Variable Localization 

𝛻𝐽 = 𝑀 − 1 𝐰− 𝐘𝑇𝐑−1 𝐝 − 𝐘𝐰 = 𝟎 

This cost function is written the same as the original LETKF formulation, except with different 
definitions for w and Y. We can similarly solve for w by setting the cost function gradient to 
zero. 

𝐰 = 𝑀 − 1 𝐈 + 𝐘𝑇𝐑−1𝐘
−1
𝐘𝑇𝐑−1𝐝 

ψ χu Tu q Psu 

ψ 

χu 

Tu 

q 

Psu 

𝐘 = 𝐘𝜓 𝐘𝜒  

𝐽 =
(𝑀 − 1)

2
𝐰𝑇𝐰+

1

2
𝐝 − 𝐘𝐰 𝑇𝐑−1 𝐝 − 𝐘𝐰  

The cost function is equivalent to the previous LETKF formulation: 

where: 

𝐘 ∈ ℝ𝐿×2𝑀 


