# Localization Method for a Multivariate Ensemble Kalman Filter

## **Mikyoung Jun**

Department of Statistics Texas A&M University

May 20, 2014

This is joint work with Soojin Roh, Istvan Szunyogh (TAMU), and Marc Genton (KAUST)

M. Jun (TAMU)

Multivariate Localization

- ► Localization by Schur (elementwise) product of P<sup>b</sup> and a localization matrix from a compactly supported correlation function p(·)
- In statistics, such localization function is often called "taper"; needs to be positive definite
- For multivariate state variables, current practice is to apply the same localization function to each "block" of P<sup>b</sup>

- For example (bivariate case):
  - ▶ Bivariate ensembles  $\mathbf{x}^{b(k)} = (\mathbf{x}_1^{b(k)}, \mathbf{x}_2^{b(k)}), k = 1, ..., M$ ▶  $\mathbf{P}^b = \frac{1}{M-1} \mathbf{X}^b \mathbf{X}^{bT}$ , where  $\mathbf{X}^b = \mathbf{x}^{b(k)} \bar{\mathbf{x}}^{b(k)}$

  - $\blacktriangleright$  **P**<sup>b</sup> can be expressed as

$$\mathbf{P}^{b} = \begin{pmatrix} \mathbf{P}_{11}^{b} & \mathbf{P}_{12}^{b} \\ \mathbf{P}_{21}^{b} & \mathbf{P}_{22}^{b} \end{pmatrix},$$

where 
$$\mathbf{P}_{ij}^{b} = \frac{1}{M-1} \mathbf{X}_{i}^{b} \mathbf{X}_{j}^{bT}$$
 and  $\mathbf{X}_{i}^{b} = \mathbf{x}_{i}^{b(k)} - \bar{\mathbf{x}}_{i}^{b(k)}$ 

- Problem of rank deficiency:
  - Localization matrix  $\begin{pmatrix} L & L \\ L & L \end{pmatrix}$
  - Problem is more serious when P<sup>b</sup><sub>ii</sub>'s are "significant"
- Mathematically, we need
   ρ(·) = {ρ<sub>ij</sub>(·)}<sub>i,j=1,...,N</sub>: matrix-valued correlation (positive definite) function, N : number of state variables
- Even in statistics literature, not many known such "valid" ρ (parametric) functions are available yet!

- ► Use  $\rho_{ij}(\cdot) = \beta_{ij} \cdot \rho(\cdot)$  with  $|\beta_{ij}| < 1$ ,  $|\beta_{ji}| < 1$ , and  $\beta_{ii} = \beta_{jj} = 1$ .
  - $\begin{pmatrix} 1 & \beta \\ \beta & 1 \end{pmatrix}$  is positive-definite and of full rank for any  $\beta$  with  $|\beta| < 1$ .
  - For  $\rho$ , use any localization functions in Gaspari and Cohn (1999).
- This multivariate localization function is separable in the sense that

multivariate component (in the above example,  $\begin{pmatrix} 1 & \beta \\ \beta & 1 \end{pmatrix}$ )

#### and

localization function (in the above example,  $\rho$ ) are factored: no interaction!

- Use one of a few multivariate compactly supported correlation functions available in statistics literature.
  - e.g. Bivariate Askey function (Porcu et al. 2012)

$$ho_{ij}(\boldsymbol{d}; \nu, \boldsymbol{c}) = eta_{ij} \left( 1 - rac{\boldsymbol{d}}{\boldsymbol{c}} 
ight)_+^{\nu + \mu_{ij}},$$

- $c > 0, \mu_{12} = \mu_{21} \ge \frac{1}{2}(\mu_{11} + \mu_{22}), \nu \ge [\frac{1}{2}s] + 2$ , and s is space dimension.
- $|\beta_{ij}| \leq \frac{\Gamma(1+\mu_{12})}{\Gamma(1+\nu+\mu_{12})} \sqrt{\frac{\Gamma(1+\nu+\mu_{11})\Gamma(1+\nu+\mu_{22})}{\Gamma(1+\mu_{11})\Gamma(1+\mu_{22})}}, \beta_{ii} = \beta_{jj} = 1$

• 
$$|\beta_{ij}| \le 1$$
 if  $\mu_{11} = \mu_{22}$ .



# Experiment with bivariate Lorenz Model

- ► X<sub>k</sub> and Y<sub>j,k</sub> are equally spaced on a latitude circle (j = 1,..., J and k = 1,..., K).
- ► With boundary conditions  $X_{k\pm K} = X_K$ ,  $Y_{j,k\pm K} = Y_{j,k}$ ,  $Y_{j-J,k} = Y_{j,k-1}$ , and  $Y_{j+J,k} = Y_{j,k+1}$ ,

$$\frac{dX_k}{dt} = -X_{k-1}(X_{k-2} - X_{k+1}) - X_k - (ha/b)\sum_{j=1}^J Y_{j,k} + F,$$

$$\frac{dY_{j,k}}{dt} = -abY_{j+1,k}(Y_{j+2,k} - Y_{j-1,k}) - aY_{j,k} + (ha/b)X_k$$

# **Bivariate Lorenz Model**

▶ 36 variables of X, 360 variables of Y, a = 10, b = 10, h = 2



locations

### longitudinal profiles

### Two scenarios for observation

- 1 Observe 20% of **X** and 90% of **Y** at locations where **X** is not observed.
- 2 Fully observe X and Y
- Four localization schemes
  - S1 No localization
  - S2 No localization and let  $\mathbf{P}_{12}^b = \mathbf{P}_{21}^b = 0$ .
  - S3 localize  $P_{11}^b$  and  $P_{22}^b$ , but let  $P_{12}^b = P_{21}^b = 0$ .
  - S4 localize  $\mathbf{P}_{11}^{b'}$ ,  $\mathbf{P}_{22}^{b}$ ,  $\mathbf{\bar{P}}_{12}^{\bar{b}}$ ,  $\mathbf{P}_{21}^{b}$

# Localization (S4)

1 Gaspari-Cohn function:  $\rho_{ij}(d; c) = \beta_{ij}\rho(d; c), i, j = 1, 2$ , where

$$\rho(d;c) = \begin{cases} -\frac{1}{4} (|d|/c)^5 + \frac{1}{2} (d/c)^4 + \frac{5}{8} (|d|/c)^3 - \frac{5}{3} (d/c)^2 + 1, & 0 \le |d| \le c; \\ \frac{1}{12} (|d|/c)^5 - \frac{1}{2} (d/c)^4 + \frac{5}{8} (|d|/c)^3 + \frac{5}{3} (d/c)^2 - 5(|d|/c) + 4 - \frac{2}{3} c/|d|, & c \le |d| \le 2c \end{cases}$$

$$0, \qquad 2c \le |d|$$

and  $\beta_{11} = \beta_{22} = 1$ ,  $0 \le \beta_{ij} \le 1$ . (support=2*c*)

2 Bivariate Askey function

$$\rho_{ij}(\boldsymbol{d};\boldsymbol{c}) = \beta_{ij} \left(1 - \frac{|\boldsymbol{d}|}{\boldsymbol{c}}\right)_{+}^{\nu + \mu_{ij}}, \ i, j = 1, 2$$

with  $\mu_{11} = 0$ ,  $\mu_{22} = 2$ ,  $\mu_{ij} = 1$ ,  $\nu = 3$ , and  $\beta_{11} = \beta_{22} = 1$ ,  $0 \le \beta_{ij} \le 0.7$ . (support=*c*)

# Results for **X** in scenario 1

support 50

support 70



M. Jun (TAMU)

Multivariate Localization

May 20 12 / 17

# Results for Y in scenario 1

support 50

support 70



M. Jun (TAMU)

Multivariate Localization

May 20 13 / 17

## Results for **X** in scenario 2

support 50

support 70



M. Jun (TAMU)

Multivariate Localization

May 20 14 / 17

## Results for **Y** in scenario 2

support 50

support 70



M. Jun (TAMU)

Multivariate Localization

May 20 15 / 17

- Different localization length for each state variable?
- Estimation of "tuning parameters"

# Thank you!

mjun@stat.tamu.edu