

Improved Localization of the Ensemble-based Observation Impact Estimate using a Dynamic Group Filter Technique

Nicholas Gasperoni and Xuguang Wang

Center for Analysis and Prediction of Storms OU School of Meteorology

6th EnKF Workshop – 20 May 2014

Motivation

"How much impact does a subset of assimilated observations have on the forecast?"

- Data-denial (OSE/OSSEs)
 - Straightforward (compare experiments 'denying' observations with a control experiment)
 - Computational cost is high (need many assimilation/forecast experiments)
- Adjoint Method (e.g. Langland and Baker 2004, Gelaro and Zhu 2008, Cardinali 2009)
 - No need for data denial experiments, just the control run
 - Based on adjoint sensitivity, tangent linear model
 - Limited by linearity, difficulty of developing an adjoint for complex models

Motivation

Ensemble-based method (e.g. Liu and Kalnay 2008, Kalnay et al. 2012)

- Use of ensemble covariances to estimate sensitivities (no data denial, adjoint necessary)
- Sampling error (ensemble size typically << model degrees of freedom)</p>
- Localization can be applied to ameliorate sampling error
- Localization of ensemble-based impact is not trivial
 - Space/shape
 - Cross-variable
 - Time/Location
- Goal: Apply dynamic localization method to improve accuracy of ensemble impact metric, learn more about what 'proper' localization should look like

Ensemble Impact Metric

Kalnay et al. (2012)

 Analogous to Langland and Baker (2004) adjoint approach – impact defined as reduction of (squared) error

Ensemble Impact Metric

-

$$J_{Actual} = \frac{1}{2} \left(\mathbf{e}_{t|0}^{T} \mathbf{e}_{t|0} - \mathbf{e}_{t|-n}^{T} \mathbf{e}_{t|-n} \right)$$
$$J_{Estimate} = \frac{1}{K-1} \left(\delta \mathbf{y} \right)^{T} \mathbf{R}^{-1} \left[\rho_{I} \circ \left(\mathbf{Y}_{0}^{a} \mathbf{X}_{t|0}^{fT} \right) \right] \left(\mathbf{e}_{t|0} + \mathbf{e}_{t|-n} \right)$$

- Localization applied to covariances between analysis (in obs space) and model forecast
- Addition of *moving* localization (Kalnay et al. 2012, Ota et al. 2013) led to improved estimates
- What should proper choice of localization look like?

Group Filter Method

- Anderson (2007) Monte Carlo technique to evaluate sampling errors.
- Uses groups of ensembles (m = 4 groups of k = 16 members, 64 total for this study).
- Each group has a sample regression coefficient at each ob (*l*), grid point (*j*) pair, β_{li}

$$\beta_{lj} = \frac{\left(\mathbf{Y}_{0}^{a} \mathbf{X}_{t|0}^{fT}\right)_{lj}}{\left(\mathbf{Y}_{0}^{a} \mathbf{Y}_{0}^{aT}\right)_{jj}}$$

• Choose weighting factor, α_{min} , that minimizes RMS differences between group β 's, also known as <u>Regression Confidence Factor (RCF)</u>

$$RCF = \alpha_{\min} = \frac{m - Q^2}{(m - 1)Q^2 + m} \qquad \qquad Q \equiv \frac{s_{\beta}}{\left|\overline{\beta}\right|}$$

- *m* is the number of groups
- Every ob, state variable pair has unique RCF, and can be used directly as localization function, valid for a ensemble of size k

Experiment Setup

- LETKF system with Dry, primitive equation 2-layer model (Zou et al. 1993)
 - Used in several ensemble-based data assimilation experiments because of (e.g., Wang et al., 2007, 2009; Holland and Wang, 2013)
 - Layer thickness, u, v
 - Radiative heating and surface drag, with zonal wavenumber-2 terrain, Runge Kutta for forward integration
 - LETKF system setup from Holland and Wang (2013)
 - T31 model resolution
 - 24-hr assimilation cycle length, 1000 cycles total, GC localization (8000 km cutoff)
 - 362 synthetic equally-spaced interface height observations assimilated
 - Ensembles -> random draw from states of truth run
 - 64 total ensemble members
- RCF computed for each ob/state pair at each cycle time for 0,1,2,3,4-day forecasts, then averaged over all cycles to reduce noise from sampling error
- Test impact estimate using 16-ensemble members
 - Compare RCF localization to static localizations and no localization

Experiment Setup

RCF functions Zonal Cross Section, Midlatitude Observation

Sensitivity to number of ensemble members per group

Sensitivity to number of groups (using 16-mem ensemble)

Examples of RCF Localization functions

RCF for model interface height, at analysis time

- Triple-peaked structures for some midlatitude obs
- Stretching in zonal direction
- Stretching along equator for tropical obs

Results – RCF Functions

Single Observation Impact Experiment

All-Obs Experiments - Verification

- Impact estimates from each observation summed up at each grid point
- Verified against *actual impact* actual forecast error reduction in mean ensemble calculated against the truth
- Root mean square error (RMSE) and Skill Score (SS)

$$SS = 1 - \frac{RMSE}{RMSE_{ref}} = 1 - \frac{\left[\sum_{k=1}^{N} \left(\Delta e_{actual,k}^{2} - \Delta e_{ens\ est,k}^{2}\right)^{2}\right]^{1/2}}{\left[\sum_{k=1}^{N} \left(\Delta e_{actual,k}^{2}\right)^{2}\right]^{1/2}}$$

RMSE_{ref} = RMS of the actual impact field, or can be thought of as the RMSE of an "impact estimate" of 0 at all grid points.

All-Obs Experiments - Verification

- Time-mean SS, averaged over all grid points
- For impact on forecast model interface height (solid) and meridional wind (dashed)
- At analysis (t = 0), GC
 localization outperforms RCF
 localization
- At 1-day forecast and beyond, RCF outperforms GC, differences grow in magnitude

All-Obs Experiments - Verification

- Cycle-mean SS, Percentage of the 900 analysis cycles which show positive skill
- Cycle-mean SS, Percentage of the 900 analysis cycles which show SS greater than 0.5

Zonal Average Pattern Correlation

Zonal Average SS

Tropics Issue – RCF functions

Tropics – Single Ob Experiment

Conclusions

- Group Filter technique revealed underlying model dynamics
- Single-observation experiments displayed the evolving structures of the actual forecast error reduction
 - Increased magnitude and coverage in actual impact with longer lead time
- Applying RCF functions for impact estimates showed overall improvement when verified against the actual forecast error reduction, especially at longer forecast lead times.
 - Biggest contribution from dynamic localization was ability to capture time-evolving component (spatial coverage, magnitude diminishing, shift)
- Noted deficiencies at impact estimates near tropics
 - There is an inherentl relationship between the localization applied at assimilation time and the localization used for the impact estimate
 - Utility of adaptive localization method for ensemble impact metric depends on what localization was used during assimilation

Future Work

- Impact experiments at mesoscale
 - Dallas testbed, "Network of Networks"
 - Compare ensemble estimated impact to OSEs
 - Apply dynamic localization technique
- Explore application of other adaptive methods besides group filter

Thank You! Questions?

All-Obs Experiments – GC tuning

Discussion

- Inherent relationship between proper localization choice for impact metric and the localization used during assimilation
- Derivation relies on post-analysis Kalman gain formulation $\mathbf{K} = \mathbf{P}^{a}\mathbf{H}^{T}\mathbf{R}^{-1} = (k-1)^{-1}\mathbf{X}^{a}\mathbf{X}^{aT}\mathbf{H}^{T}\mathbf{R}^{-1}$
- However, the above is not explicitly valid when localization is applied during assimilation.

$$\mathbf{K} = \mathbf{P}_{loc}^{a} \mathbf{H}^{T} \mathbf{R}^{-1} \qquad \mathbf{P}_{loc}^{a} = (\mathbf{I} - \mathbf{K} \mathbf{H}) \left(\boldsymbol{\rho}_{A} \circ \mathbf{P}^{b} \right)$$

- So, the original formulation is valid only under the *approximation* that $\mathbf{P}_{loc}^a \approx \mathbf{P}^a = (k-1)^{-1} \mathbf{X}^a \mathbf{X}^{aT}$
- This approximation becomes poor as localization is more severe.
- So the proper choice for localization of the impact estimate is tied to the localization used during assimilation