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Vlotivation

@ “How much impact does a subset of assimilated observations
have on the forecast?”

@ Data-denial (OSE/OSSEs)

@ Straightforward (compare experiments ‘denying’ observations with a
control experiment)

@ Computational cost is high (need many assimilation/forecast experiments)

@ Adjoint Method (e.g. Langland and Baker 2004, Gelaro
and Zhu 2008, Cardinali 2009)

@ No need for data denial experiments, just the control run
@ Based on adjoint sensitivity, tangent linear model
@ Limited by linearity, difficulty of developing an adjoint for complex models



Vlotivation

@ Ensemble-based method (e.g. Liu and Kalnay 2008,
Kalnay et al. 2012)

@ Use of ensemble covariances to estimate sensitivities (no data denial,
adjoint necessary)

@ Sampling error (ensemble size typically << model degrees of freedom)
@ Localization can be applied to ameliorate sampling error

@ Localization of ensemble-based impact is not trivial
@ Space/shape
@ Cross-variable
@ Time/Location

@ Goal: Apply dynamic localization method to improve accuracy of
ensemble impact metric, learn more about what ‘proper’
localization should look like



Ensemble Impact Metric

@ Kalnay et al. (2012)

@ Analogous to Langland and Baker (2004) adjoint approach — impact defined
as reduction of (squared) error
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Ensemble Impact Metric

1

T
- _(eﬂoeﬂo Co- netl—n)

J —
Actual
2

] 1

Estimate — K — 1(5}’) R_l [101 (Y XtIO )] ( tl()+et|—n)

@ Localization applied to covariances between analysis (in obs space) and
model forecast

@ Addition of moving localization (Kalnay et al. 2012, Ota et al. 2013) led to
improved estimates

@  What should proper choice of localization look like?



Group Filter Method

@ Anderson (2007) - Monte Carlo technique to evaluate sampling errors.
@ Uses groups of ensembles (m = 4 groups of k = 16 members, 64 total for this

study).
@ Each group has a sample regression coefficient at each ob (/), grid point (j) pair, f3;
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@ Choose weighting factor, «,, ., that minimizes RMS differences between group s,
also known as Regression Confidence Factor (RCF)
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@ m is the number of groups

@ Every ob, state variable pair has unique RCF, and can be used directly as
localization function, valid for a ensemble of size k



Experiment Setup

@ LETKF system with Dry, primitive equation 2-layer model (Zou et al. 1993)

@ Used in several ensemble-based data assimilation experiments because of (e.g., Wang
et al., 2007, 2009; Holland and Wang, 2013)

@ Layer thickness, u, v

@ Radiative heating and surface drag, with zonal wavenumber-2 terrain, Runge Kutta for
forward integration

@ LETKF system setup from Holland and Wang (2013)
@ T31 model resolution
@ 24-hr assimilation cycle length, 1000 cycles total, GC localization (8000 km cutoff)
@ 362 synthetic equally-spaced interface height observations assimilated
“

Observation Locations
[ e

Ensembles -> random draw from states of truth run
@ 64 total ensemble members
@ RCF computed for each ob/state pair at each cycle
time for 0,1,2,3,4-day forecasts, then averaged over
all cycles to reduce noise from sampling error
@ Test impact estimate using 16-ensemble members

@ Compare RCF localization to static localizations and
no localization




Experiment Setup
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Sensitivity to
number of
ensemble
members per

group

Sensitivity to
number of groups
(using 16-mem
ensemble)
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Examples of RCF

Localization functions

RCF for model interface height, at analysis time
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Results — RCF Functions
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Single Observation Impact Experiment

Actual Impact Estimate with GC Loc Estimate with RCF Loc

RMS = 2483.3 (M’)  RMSE = 237.1 (M’)  RMSE = 1281.2 (m?)
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All-Obs Experiments - Verification

@ Impact estimates from each observation summed up at each grid point

@ Verified against actual impact — actual forecast error reduction in mean ensemble
calculated against the truth

@ Root mean square error (RMSE) and Skill Score (SS)
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® RMSE, = RMS of the actual impact field, or can be thought of as the RMSE of an
“impact estimate” of 0 at all grid points.
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All-Obs Experiments - Verification

Time-mean SS, averaged over all

grid points

For impact on forecast model
interface height (solid) and
meridional wind (dashed)

At analysis (t=0), GC
localization outperforms RCF
localization

At 1-day forecast and beyond,

RCF outperforms GC, differences

grow in magnitude
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All-Obs Experiments - Verification

@ Cycle-mean SS, Percentage of the 900
analysis cycles which show positive
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Zonal Average Pattern Correlation

@ Analysis
impact

@ 2-dayimpact

Correlation
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1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

o
o

I I I I I I I I I I I I
i Group Filter Loc i
] GC Loc (8000 km)| [
1a No Loc B
T T | T T | T T | T T | T T | T T
90 60 30 0 30 60 90
Latitude
I I | I I | I I | I I | I I | I I
_ Group Filter Loc i
] GC Loc (8000 km)|[
T b No Loc B
| | I | | I | | I | | I | | I | |
90 60 30 0 30 60 90

Latitude



Zonal Average SS
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Tropics Issue — RCF functions
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Tropics — Single Ob Experiment

Analysis impact (t = 0) 1-day Forecast impact (t = 1)

Actual Impact RMS = 6.9833 (m?) Actual Impact RMS = 33.0717 (m?)

Actual
Impact

RMSE = 33.3674

Estimate
with GC
localization
(8000 km)

Estimate
with Group
Filter
localization
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Conclusions

@ Group Filter technique revealed underlying model dynamics

@ Single-observation experiments displayed the evolving
structures of the actual forecast error reduction
@ Increased magnitude and coverage in actual impact with longer lead
time
@ Applying RCF functions for impact estimates showed overall
improvement when verified against the actual forecast error
reduction, especially at longer forecast lead times.

@ Biggest contribution from dynamic localization was ability to capture
time-evolving component (spatial coverage, magnitude diminishing,
shift)

@ Noted deficiencies at impact estimates near tropics

@ There is an inherentl relationship between the localization applied at
assimilation time and the localization used for the impact estimate

@ Utility of adaptive localization method for ensemble impact metric
depends on what localization was used during assimilation



Future Work

@ Impact experiments at mesoscale
@ Dallas testbed, “Network of Networks”
@ Compare ensemble estimated impact to OSEs
@ Apply dynamic localization technique

@ Explore application of other adaptive methods besides group
filter
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Discussion

@ Inherent relationship between proper localization choice for
impact metric and the localization used during assimilation

@ Derivation relies on post-analysis Kalman gain formulation
K=PHR!= (k-1)2X°X°"H'R!
@ However, the above is not explicitly valid when localization is
applied during assimilation.

K-P'H'R" P =I-KH)(p,oP")

@ So, the original formulation is valid only under the
approximation that P! ~P*=(k-1)"X"X"

@ This approximation becomes poor as localization is more severe.

@ So the proper choice for localization of the impact estimate is
tied to the localization used during assimilation



