CAPS Real-time Storm-scale EnKF Data Assimilation and Forecast System for the Hazardous Weather Testbed Spring Experiment

5/20/2014

Youngsun Jung, Ming Xue, Fanyou Kong, Yunheng Wang, Kevin Thomas, Feifei Shen, and Shizhang Wang

> Center for Analysis and Prediction of Storms University of Oklahoma

Background

- CAPS/OU has been producing 4-km CONUS-domain ensemble forecasts for evaluation at NOAA HWT (Hazardous Weather Testbed) since spring 2007
- Goals: To determine the optimal design, configurations, and post-processing of storm-scale ensemble prediction, and to provide the products for evaluation by forecasters and researchers, and test storm-scale data assimilation methods.
- Develop a hybrid MPI-OpenMP parallel algorithm for EnSRF (Wang et al. 2013)
- Case studies: 10 May 2010 tornado outbreak
- Spring 2013: Real-time experimental single EnKF DA in the central US domain. 24-hour daily forecast.

2013 Experimental single 4-km EnKF SSEF initialized at 00 UTC

- Forecast model: WRF-ARW
- Microphysics scheme: WSM6 with perturbed Nor, Nog, ρ_g
- Multi-PBL schemes: MYJ, YSU, ACM2, MYNN, QNSE
- 40 member ensemble
- DA scheme: ARPS parallel EnSRF
- DA: single data assimilation at 0000 UTC
- 24-hour deterministic forecast from an ensemble mean analysis

2013 Experimental single 4-km EnKF SSEF initialized at 00 UTC

- Initial conditions and lateral boundary conditions: NAM analysis + SREF perturbations
- Observations: sounding, profiler, surface, radar (Z, V_r)
- Influence radii: sounding (800 km), profiler (800 km), surface (300 km), radar (16 km)
- Covariance inflation: Relaxation-to-prior-spread (RTPS) following Whitaker and Hamill (2012) + multiplicative (Anderson 2001; Xue et al. 2005)

2013 Experimental 4km EnKF SSEF initialized at 00 UTC

2013 Domain

CONUS domain: 1200x768
Central US domain: 600x400

ETS for composite reflectivity

 $Z \ge 20 \text{ dBZ}$

 $Z \ge 40 \text{ dBZ}$

ETSs averaged over 14 forecast days for deterministic forecasts starting from the EnKF mean analysis

20 May 2013 4hr forecast

Composite reflectivity

30 May 2013 3hr forecast

Composite reflectivity

2014 partially cycled 4-km EnKF SSEF (Experimental)

- Forecast model: WRF-ARW
- Physical domain: CONUS (1200x768x50)
- 40 member ensemble
- DA: 2300, 2315, 2330, 2345, 0000 UTC
- Observations: sounding, profiler, surface, radar (Z, V_r)
- Microphysics scheme: WSM6 with perturbed N0r, N0g, ρ_g
- Multi-PBL schemes: MYJ, YSU, ACM2, MYNN, QNSE
- DA scheme: ARPS parallel EnSRF

2014 partially cycled 4-km EnKF SSEF (Experimental)

- Initial conditions and lateral boundary conditions: NAM analysis + SREF perturbations
- Influence radii: sounding (800 km), profiler (800 km), surface (300 km), radar (16 km)
- Relaxation-to-prior-spread (RTPS)Inflation following Whitaker and Hamill (2012)
- 24-hour 12 member ensemble forecasts

2014 Domain

CONUS domain: 1200x768 Central US domain: 600x400

Configurations for 12-member ensemble forecasts

Member	ember IC BC		Microphysics	LSM	PBL
enkf_m1	enk_m1a	arw_cn	Thompson(8)	Noah	MYJ(2)
enkf_m2	enk_m2a	arw_m3	MY2(9)	Noah	MYJ(2)
enkf_m3	enk_m3a	arw_m4	Morrison(10)	Noah	MYJ(2)
enkf_m6	enk_m6a	arw_m5	Thompson(8)	Noah	MYNN(5)
enkf_m7	enk_m7a	arw_m6	MY2(9)	Noah	YSU(1)
enkf_m8	enk_m8a	arw_m7	Morrison(10)	Noah	YSU(1)
enkf_m9	enk_m9a	arw_m8	Thompson(8)	Noah	QNSE(4)
enkf_m10	enk_m10a	arw_m9	MY2(9)	Noah	MYNN(5)
enkf_m11	enk_m11a	arw_m10	Thompson(8)	Noah	YSU(1)
enkf_m12	enk_m12a	arw_m11	WDM6(16)	Noah	YSU(1)
enkf_m15	enk_m15a	arw_m12	Morrison(10)	Noah	MYNN(5)
enkf_m16	enk_m16a	arw_m13	WDM6(16)	Noah	MYJ(2)

2014 1-hour cycled 4-km EnKF SSEF initialized at 00 UTC

Flow chart for the 2014 SE

Several new features of ARPS EnKF

- Can store only analyzed fields in enkf format or directly in wrfinput format (netCDF)
- Support more flexible MPI configurations for EnKF
 - WRF domain decomposition: 4x48 (192 split files)
 - EnKF domain decomposition: 24x48 MPI processes
- Can work with fewer ensemble members available at the analysis time
- Can handle missing radar files due to corruption of input data

Comparison with 2013 HWT forecasts for the tornado outbreak of 20 May 2013

	Member	IC	BC	Radar	Micro	LSM	PBL
ſ	arw_cn	ooZAPRSa	00Z NAMf	yes	Thompson	Noah	MYJ
	arw_m20	ooZAPRSa	00Z NAMf	yes	M-Y	Noah	MYJ
ł	arw_m21	ooZAPRSa	00Z NAMf	yes	Morrison	Noah	MYJ
L	arw_m22	ooZAPRSa	00Z NAMf	yes	WDM6	Noah	MYJ
	arw_m26	ooZAPRSa	00Z NAMf	yes	WSM6	Noah	MYJ
	EnKF mean	ooZ EnKFa	00Z NAMf	yes	Thompson	Noah	MYJ
	3DVAR +cloud	ooZARPS a	ooZ NAMf	yes	Thompson	Noah	MYJ

♥ 3DVAR+Cloud Analysis

T=3600.0 s (1:00:00)

01:00Z Mon 20 May 2013

1 hr forecast Valid at 0100 UTC 20 May 2013

01:00Z Mon 20 May 2013

 \mathbf{S}

M 67

100W

3DVAR/Cloud Analysis

Min=0.00 Max=66.3

45.

25.

2 hr forecast Valid at 0200 UTC 20 May 2013

3DVAR/Cloud Analysis

Min=0.00 Max=63.9

3 hr forecast Valid at 0300 UTC 20 May 2013

3DVAR/Cloud Analysis

4 hr forecast Valid at 0400 UTC 20 May 2013

T=14400.0 \$ (4:00:00)

04:00Z Mon 20 May 2013

3DVAR/Cloud Analysis

Min=0.00 Max=64.4

5 hr forecast Valid at 0500 UTC 20 May 2013

05:00Z Mon 20 May 2013

6

100₩

11030

405

3DVAR/Cloud Analysis

Min=0.00 Max=63.0

25.

21 hr forecast Valid at 2100 UTC 20 May 2013

T=75600.0 s (21:00:00)

90W

2010

21:00Z Mon 20 May 2013

405

301

R

110W

M 6

100₩

T=75600.0 s (21:00:00)

30W

21:00Z Mon 20 May 2013

compst(dBZ , Shaded)

110W

100%

45. 35.

300

65

25.

ETS for composite reflectivity

Z ≥ 20 dBZ

$Z \ge 40 \text{ dBZ}$

Performance statistics

- NICS Darter
 - Cray XC30 (Cascade) supercomputer
 - Two 2.6 GHz 64bit Intel 8-core XEON E5-2600 Series processors
 - Peak performance of 250 Tflops

Performance statistics

- Test case: 12 May 2014 case
 - Radar assimilation: ~ 3 min (16x48 PEs, 768 cores)
 - Radar + surface + sounding + profiler: ~ 80 min (4x48 PEs, 2 OMP threads, 384 cores)
 - Radar + surface + sounding + profiler: ~ 15 min (24x48 PEs, 1152 cores)
 - Radar + surface + sounding + profiler: ~ 11 min (40x48 PEs, 1920 cores)
 - 15 min forecast: ~ 4 min (4x48 PEs, 192 cores)
 - 24 hour forecast: ~ 86 min (192 cores)

Number of observations

Surface: 4, 205	Sounding: 8,966	Profiler: 54
Vr: 236,723	Z: 1,605,226	

Future plan

- 2015: Partially cycled real-time EnKF DA and ensemble forecasts in the CONUS domain
 - Longer DA window
 - Longer forecasts
- 2016 and beyond:
 - Continuously cycled real-time EnKF DA and forecasts
 - Assimilation of satellite radiance