Assimilating Cloudy Sky Infrared Brightness
Temperatures Using an Ensemble Kalman Filter

Jason A. Otkin
University of Wisconsin-Madison/CIMSS

19 May 2014



Benefits of Cloudy Sky Infrared Brightness Temperatures

e Infrared observations are highly sensitive to clouds and moisture

e Sensitivity to clouds is often viewed as a problem, but this is
likely to change as data assimilation methodologies improve

* Provide detailed information about the horizontal and vertical
distribution of clouds and their cloud top properties

e Provide valuable information about the water vapor content in
different layers of the troposphere, both in clear sky areas and
above the cloud top

e Geosynchronous infrared sensors provide observations with very
high spatial (1-2 km) and temporal (1-15 minutes) resolution

e Provide coverage in data sparse regions (such as over the
oceans) and in assimilation-sparse regions (cloudy areas)



Benefits of Cloudy Sky Infrared Brightness Temperatures

e Potential to generate more accurate moisture and cloud analyses
at high spatial resolution

e More accurate precipitation forecasts for high impact weather
events, such as thunderstorms, flooding, and blizzards

* More accurate cloud cover forecasts beneficial for solar energy
producers by leading to more accurate energy forecasts

e Infrared satellite observations complement radar observations

e Radar observations provide detailed information about the
inner portion of a cloud where cloud particles are larger

» Satellite observations provide information about optically thin
clouds and also near the cloud top where radar observations
tend to be less sensitive



Cloudy Sky Assimilation Challenges

 High likelihood of non-Gaussian error statistics
 Errors in the forward radiative transfer models
* |ce cloud properties are especially challenging
 Much more accurate than they were 5-10 years ago
e Errors in the forecast model representation of clouds

e Difficult to assimilate cloudy observations if the forecast model
does not first produce realistic cloud properties

e Different cloud microphysics schemes can produce vastly
different cloud fields

 Which model variables should be included in the state vector?

e Should all cloud variables (mixing ratio, number concentration,
etc.) for all cloud species (ice, snow, etc.) be included?



Cloudy Sky Assimilation Challenges

» Representativeness errors
e Cloudy observations can change rapidly over short distances

 May need to use different localization radii or observation
errors that are a function of cloud type or cloud height

 Vertical spreading of information
» Satellite observations are sensitive to broad layers

 Vertical localization is difficult due to changes in the weighting
function profile describing where a band is most sensitive

e Weighting function profile will change depending upon if the
grid point is clear or cloudy

e Verification methods

e Cloud observations are not highly sensitive to atmospheric
fields typically used for verification (temperature, heights, etc.)



Data Assimilation System

e Infrared brightness temperature assimilation examined using a
regional-scale Observing System Simulation Experiment approach

e Relative impact of clear and cloudy sky observations

e Horizontal covariance localization radius employed during the
assimilation step

* Impact of water vapor sensitive infrared bands on precipitation
forecasts during a high impact weather event

e Simultaneous assimilation of radar and satellite observations

e Assimilation experiments were performed using the WRF model
and the EnKF algorithm in the DART data assimilation system

» Successive Order of Interaction (SOI) forward radiative transfer
model was implemented within the DART framework

 All of the studies assimilated simulated observations from the
GOES-R Advanced Baseline Imager sensor to be launched in 2015



Clear vs Cloudy Observation Impact -- OSSE Configuration

Observations assimilated during each experiment:

 B11-ALL — both clear and cloudy sky ABI 8.5 um (band 11) T,
 B11-CLEAR - clear-sky only ABI 8.5 um T,

« CONV — conventional observations only

« CONV-B11 — both conventional observations and ABI 8.5 um T,
« Control — no observations assimilated

 Assimilation experiments were performed using a 40-member
ensemble with 12-km horizontal resolution and 37 vertical levels

* Observations were assimilated once per hour during a 12-hr
period

* Oftkin, J. A., 2010: Clear and cloudy-sky infrared brightness temperature
assimilation using an ensemble Kalman filter. J. Geophys Res., 115,
D19207, doi:10.1029/2009JD013759.



Ensemble-Mean ABI 11.2 um Brightness Temperatures
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« Compared to the conventional-only case, the assimilation of 8.5 um
brightness temperatures had a larger and more immediate impact on
the erroneous cloud cover across the southern portion of the domain
and also improved the structure of the cloud shield further north




Ensemble-Mean ABI 11.2 um Brightness Temperatures
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* By the end of the assimilation period, the most accurate analysis is

achieved when both conventional and 8.5 um T, are assimilated

« Comparison of the CONV and B11-ALL images shows that the 8.5 um

Tb have a larger impact than the conventional observations




Horizontal Localization Radius Tests -- OSSE Configuration

Four assimilation experiments were performed:

e Control — conventional observations only

« HLOC-100KM — conventional + ABI 8.5 um T, (100 km loc. radius)
« HLOC-200KM — conventional + ABI 8.5 um T, (200 km loc. radius)
« HLOC-300KM — conventional + ABI 8.5 um T, (300 km loc. radius)

 Assimilation experiments were performed using an 80-member
ensemble with 18-km horizontal resolution and 37 vertical levels

* Observations were assimilated once per hour during 12-hr period

* Both clear and cloudy sky ABI 8.5 um brightness temperatures
were assimilated

* Otkin, J. A., 2012: Assessing the impact of the covariance localization
radius when assimilating infrared brightness temperature observations
using an ensemble Kalman filter. Mon. Wea. Rev., 140, 543-561.



Cloud Water Path Error Time Series
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« Different performance for the clear and cloudy grid points

* Larger localization radius generally better for clear grid points but
worsens the analysis in cloudy regions
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Cloud Errors After Last Assimilation Cycle
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(QALL) errors over the entire
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assimilation cycle

 Similar errors occurred for
the clear sky grid points

 Errors consistently
decreased with decreasing
localization radius for the
cloudy grid points

» Suggests different loc. radii
should be used for clear and
cloudy observations
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Thermodynamic Errors After Last Assimilation Cycle
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* Thermodynamic and
moisture errors after the
last assimilation cycle

» Greater degradation
tended to occur when a
larger radius was used

* These results show
that a smaller radius is
necessary to maintain
accuracy relative to
Control case




Short-Range Forecast Impact
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* Results show that without improvements in the thermodynamic and
moisture fields, it is difficult to preserve initial improvements in the cloud
field




Impact of ABI Water Vapor Bands

» A regional-scale OSSE was used to evaluate the impact of the water
vapor sensitive ABI bands on the analysis and forecast accuracy during
a high impact weather event

» Five assimilation experiments were performed:
e Control  — conventional observations only
e« Band-08 -- conventional + ABI 6.19 um T, (upper-level WV)
e« Band-09 -- conventional + ABI 6.95 um T, (mid-level WV)
 Band-10 -- conventional + ABI 7.34 um T, (lower-level WV)
(

« Band-11 -- conventional + ABI 8.5 um T, (window)

 Assimilation experiments were performed using a 60-member
ensemble containing 15-km horizontal resolution and 37 vertical levels

» Observations were assimilated every 30 minutes during a 6-hr period
« Otkin, J. A., 2012: Assimilation of water vapor sensitive infrared

brightness temperature observations during a high impact weather
event. J. Geophys. Res., 117, D19203, doi:10.1029/2012JD017568.



Impact of ABI Water Vapor Bands
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 Large improvements made to the water vapor and cloud analyses after
each assimilation cycle regardless of which band was assimilated

« Smallest errors occurred when brightness temperatures from lower-
peaking channels were assimilated

« Each of the water vapor band assimilation cases have smaller cloud
errors than the Control and window band 11 cases




6-nr Accumulated Precipitation Forecasts
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* Precipitation forecasts were more accurate during the brightness
temperature assimilation cases.




Simultaneous Assimilation of Radar and Satellite Data

» A regional-scale OSSE was used to evaluate how the simultaneous
assimilation of radar and satellite observations impacts the analysis
and forecast accuracy during a high impact weather event

e Four assimilation experiments were performed:

« CONV  — conventional observations only
o SAT -- conventional + ABI 6.95 um T, (band 9)
« RAD -- conventional + radar reflectivity and radial velocity

* RADSAT -- conventional + satellite + radar

 Assimilation experiments were performed using a 48-member
ensemble containing 15-km horizontal resolution and 53 vertical levels

* Observations were assimilated every 5 minutes during a 1-hr period

« Jones, T. A., J. A. Otkin, D. J. Stensrud, and K. Knopfmeier, 2013:
Assimilation of simulated GOES-R satellite radiances and WSR-88D
Doppler radar reflectivity and velocity using an Observing System
Simulation Experiment. Mon. Wea. Rev., 141, 3273-3299.



Simulated Satellite Imagery Comparison
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e Simulated 6.95 um Tb
after the last assimilation
cycle at 1200 UTC

« CONV case is too cold
and does not have fine
scale structures

« SAT, RAD & RADSAT
cases all improve analysis
accuracy relative to Truth

» Satellite data reduces
the cold bias, while radar
data adds the finer scale
structures
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Assimilating radar data has large impact on all variables

Satellite data has positive impact on mid-upper tropospheric frozen
hydrometeor variables (QGRAUP, QICE, QSNOW)




