
Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Scaling

Discussion

Computational Efficiency

P.L. Houtekamer – 6th EnKF workshop

18-22 May 2014

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Scaling

Discussion

overview

1 Introduction
motivation
parallel computers

2 The EnKF algorithm
Monte Carlo approach to data assimilation
cost in a data-assimilation cycle

3 Scaling
strong scaling
weak scaling

4 Discussion

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

motivation

parallel
computers

The EnKF
algorithm

Scaling

Discussion

introduction

Over recent years, we have been increasing all resolution
related parameters of the Canadian operational global EnKF.

Implementation Nlon Nlat Nlev Nens Nobs cost

January 2005 300 150 28 96 100 000 1
August 2011 400 200 58 192 300 000 22
February 2013 600 300 74 192 700 000 148
Autumn 2014 800 400 74 256 700 000 350

As a - not so bad - assumption we take:

cost = O(Nlon × Nlat × Nlev × Nens × Nobs)

The substantial increase in resolution and cost has been made
possible by an equally substantial increase of the capacity of
the super computer clusters at our center.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

motivation

parallel
computers

The EnKF
algorithm

Scaling

Discussion

The 13 February 2013 EnKF upgrade
From “reference” to “newops”

 3

 3.02

 3.04

 3.06

 3.08

 3.1

 3.12

 3.14

 3.16

 3.18

 3.2

 3.22

 0.5 1 2 4 8 16

e
rr

o
r

e
n
e
rg

y
 n

o
rm

Analysis cost

efficiency of EnKF improvements

ensemble size

horizontal resolution

vertical resolution

data thinning

ensemble size

reference

multiscale

temporal

horizontal

filteredtopo

vertical

dense

newops

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

motivation

parallel
computers

The EnKF
algorithm

Scaling

Discussion

Example computer cluster with 2 nodes,
each having 4 cores

a) The computer cluster has 2 nodes
each with 4 cores sharing memory.
b) Eight processes run without
sharing memory (pure MPI model).
c) Four processes run without
sharing memory. Each process uses
two physical cores.
d) One process runs on each code. A
process uses all the memory available
on its node.
e) Each process consists of two
software threads which can share
memory (hybrid MPI + OpenMP
model).

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

motivation

parallel
computers

The EnKF
algorithm

Scaling

Discussion

Parallelization using the MPI
Message Passing Interface

At the largest scale, parallelization on the computer cluster
uses the MPI message passing interface. Different copies of a
program runs simultaneously on the cluster to solve different
parts of the same numerical problem. When necessary, they
communicate using messages sent via the MPI protocol.
Messages are sent between processes which may or may not
run on the same node.

Just using MPI, it is possible for a program to make use of the
entire computer cluster. For this to be efficient:

1 it must be possible to split the problem into a large
number (O(1000)) of quasi-independent sub-problems.

2 each sub-problem should (have enough memory to) run on
just one core.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

motivation

parallel
computers

The EnKF
algorithm

Scaling

Discussion

parallelization using OpenMP

Within a software process, running on part of a node, one can
have multiple software threads sharing memory.
Shared-memory parallelization, using OpenMP, is often at the
level of loops in Fortran code as illustrated in an example from
the book by Chandra et al.
!$omp parallel do private(j,x,y)

do i=1,m
do j=1,n

x=i/real(m)
y=j/real(n)
depth(i,j)=mandel val(x,y,maxiter)

enddo
enddo

!$omp end parallel do

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

motivation

parallel
computers

The EnKF
algorithm

Scaling

Discussion

trends

The trend is towards having more compute cores with each
computer upgrade. Future machines may well have O(100 000)
cores available for EnKF applications.

The standard programming model is to use Fortran code with
parallelization by means of a hybrid use of MPI and OpenMP.

How well a program exploits the available computer resources
translates directly into the size of problem that can be handled
and thus also into the quality of the results.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Monte Carlo
approach to data
assimilation

cost in a
data-assimilation
cycle

Scaling

Discussion

EnKF flowchart

ensemble of
analyses

@@
��

model error
addition

@@
��

perturbed
analyses

digital filter

forecast model
��
@@

states at
a number of
time levels

��
@@

weighted
mean

observations

��@@

��@@
@@��

For each of Nens = 256 ensemble members, we go through a 6h
data-assimilation cycle. All information comes together in the
computation of the weighted mean, where the weights are
computed using the ensemble of Nens background fields.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Monte Carlo
approach to data
assimilation

cost in a
data-assimilation
cycle

Scaling

Discussion

cost in a data-assimilation cycle

A data-assimilation cycle consists of three main steps:

1 perform an ensemble of short integrations with the
forecast model,

2 evaluate the forward operator H,

3 use observations to obtain analysis increments.

With current (Canadian) parameters, the model integration
step is 7 times more expensive than the analysis step.
However, the ensemble of independent model integrations is
embarrassingly parallel and not time critical. It is not
discussed further.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Monte Carlo
approach to data
assimilation

cost in a
data-assimilation
cycle

Scaling

Discussion

The forward operator

The forward operator needs to applied to each of the
observations for each of the members of the ensemble. The
operation count is thus proportional to Nobs and Nens :

Cost(H) = O(NobsNens)

Pre-computing H prior to the computation of the analysis
increment is convenient since it is independent for different
members of the ensemble. Software to compute H from a
complete model trajectory is likely available at an operational
center.
Pre-computation of H is possible (and used) in most EnKF
algorithms (LETKF as well as sequential algorithms).

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Monte Carlo
approach to data
assimilation

cost in a
data-assimilation
cycle

Scaling

Discussion

The analysis increments: sequential algorithm

The weighted mean of the background and the observations is
obtained using the Kalman Gain matrix:

Ke = Pf
eH

T (HPf
eH

T + R)−1

By virtue of the sequential algorithm, the cost is dominated by

Cost(Pf
eH

T) = O(NobsNensNmodel)

With Nmodel >> Nobs , this matrix equation can be parallelized
by dividing the model grid over the different processus.

Variations on the sequential algorithm are in operational use at
CMC and NCEP.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Monte Carlo
approach to data
assimilation

cost in a
data-assimilation
cycle

Scaling

Discussion

The analysis increments: LETKF method

The LETKF computes weighting coefficients, at each grid
point, to transform the background ensemble into an analysis
ensemble (Szunyogh et al. ,2008, Tellus).

The cost is dominated by a term (Hx)R−1(Hx)T

The cost depends on the local number of observations. It can
be reduced by interpolation of weights.

An early inter-comparison of the LETKF with a sequential
algorithm (Whitaker and Szunyogh) showed

1 perfect scaling for the LETKF,

2 better than perfect scaling for the sequential algorithm,

3 lower computational cost for the sequential algorithm.

Different results could be obtained with different parameters,
implementations or different computer systems.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Scaling

strong scaling

weak scaling

Discussion

cost of analysis components

The cost of the analysis is shown for a case with 288 cores.

description of routine seconds percentage

update state vector 543 80.4 %
communicate observations 28 4.1 %
Cholesky decomposition 26 3.9 %
communicate H(x) 20 3.0 %
perturb observations 13 1.9 %
update extended part of state vector 10 1.5 %
write analyses 10 1.5 %
read trial fields 8 1.2 %

wall clock 675 100 %

The two routines in blue parallelize well. One nicely optimized
routine takes more than 80 % of the cost. Routines in red have
yet to benefit from optimization.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Scaling

strong scaling

weak scaling

Discussion

Amdahl’s law

Given a sequential fraction s and N CPUs, the application
speedup S is:

S =
1

s + 1−s
N

(Amdahl’s law)

In the example above, with 81.9 % parallel, we have s ≈ 0.18.
The maximum speedup, for N →∞ will be 5.5.

This relation is verified with a strong scaling test.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Scaling

strong scaling

weak scaling

Discussion

strong scaling results

 64

 128

 256

 512

 1024

 2048

 128 256 512 1024 2048 4096

t
i
m
e

(
s
)

number of cores

strong scaling using only MPI

measured time
Amdahl’s law

asymptote
perfect parallel program

In a strong scaling
experiment, one tries to
run a given problem
faster using a bigger
fraction of the cluster.

The current EnKF code
does not scale well
beyond say 1000 cores.
At that stage, however,
the analysis completes in
about 5 minutes.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Scaling

strong scaling

weak scaling

Discussion

weak scaling

Good strong scaling is difficult because a very high fraction of
the code needs to be parallelized. In practice, once we have
reasonably fast execution, we are more likely to want to
increase the problem size to obtain better results.

Currently, 80 % of the cost goes to updating the state vector.
The corresponding operations involve the matrix PHT . From
an operation count we have:

Cost = Nens × Nmodel × Nobs .

In weak scaling experiments, the number of nodes is
proportional to the computed cost. Ideally, the execution time
(secs) remains constant when the problem is made bigger.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Scaling

strong scaling

weak scaling

Discussion

weak scaling with ensemble size

 0

 200

 400

 600

 800

 1000

 1200

 1400

 128 256 512 1024

t
i
m
e
(
s
)

ensemble size

weak scaling with ensemble size

measured sequential
measured parallel

measured total time
sequential model

parallel model
total model

Here the number of cores equals the
ensemble size.

In a weak scaling
experiment, one tries to
run a bigger problem in
the same time on a
bigger fraction of the
cluster.

The execution time stays
about the same when
more members are used.
Unfortunately the
fraction associated with
the parallel problem
decreases.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Scaling

Discussion

software projects

1 the transition towards the use of shared Fortran-90
modules. We unified the handling of observational data
between the En-Var and EnKF group. The unification of
forward operators is in progress.

2 With the expected adoption of a higher resolution global
EnKF, a global En-Var and a regional En-Var, we will no
longer need to maintain the global and regional 4D-Var
packages.

3 On our next supercomputer, we can likely use O(10 000)
cores for the EnKF. Since this computer has an as yet
unknown architecture it is an open question if our code
can be made to run well on it.

For potential postdocs, it is very important to have experience
with a programming language like Fortran-90.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Scaling

Discussion

summary and conclusion

1 The substantial computational cost of an EnKF makes it
necessary to have an efficient implementation.

2 With more members, more observations or more grid
points one will in general obtain higher quality results.

3 The model integration step is embarrashingly parallel.

4 Both sequential and local algorithms have been proposed.

5 To obtain an efficient analysis algorithm, it is necessary to
measure the cost of the important components of the
algorithm and to make adjustments where necessary.
Optimization can have a very significant impact.

6 Computational cost depends on many aspects of the basic
algorithm, the implementation and the computer system.

7 Future computers may have O(100 000) processors and
having efficient parallel code will be very important.

Computational
Efficiency

P.L.
Houtekamer –

6th EnKF
workshop

Introduction

The EnKF
algorithm

Scaling

Discussion

Thank you

	Introduction
	motivation
	parallel computers

	The EnKF algorithm
	Monte Carlo approach to data assimilation
	cost in a data-assimilation cycle

	Scaling
	strong scaling
	weak scaling

	Discussion

