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◮ What is the linear theory? How do you account for model
error such that it simultaneously produces optimal filtering
and accurate climatological statistical estimates? Answer: It is
possible with an appropriate stochastic parameterization.

◮ What could happen if the appropriate stochastic
parameterization is not available to us? Answer: One easily
ends up with a model that gives accurate filtering but bad
climatological estimates, or vice versa.

◮ If we have an appropriate stochastic parameterization, how
should we fit the parameters? Answer: For nonlinear
problems, it is more natural to obtain the parameters “online”
as part of the filtering procedure.



Linear theory:

Consider a two-dimensional linear filtering problem,

dx = (a11x + a12y) dt + σxdWx ,

dy =
1

ǫ
(a21x + a22y) dt +

σy√
ǫ
dWy ,

dz = x dt +
√
RdV

for a slow variable x ∈ R and fast variable y ∈ R.
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for a slow variable x ∈ R and fast variable y ∈ R.
Under some “technical” assumption, we ask the following question:
Find α and σ such that the filtered estimates of the problem above

can be approximated by the filter estimates of the following

reduced model:

dX = αX dt + σ dW .



Linear theory:
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one-dimensional linear model with parameters:

α = ã(1− ǫâ),
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α = ã(1− ǫâ),

σ2 = σ2
x + ǫ(−2âσ2

x + σ2
y

a212
a222

),

where ã = a11 − a12a21a
−1
22 < 0 and â = a12a21a

−2
22 . The optimality

is in the sense of both the mean and covariance statistics are close
to estimates from the true filter.

Notations:

◮ RSF: α = ã, σ2 = σ2
x (Classical averaging theory).

◮ RSFA: α = ã, σ2 = σ2
x + ǫσ2

y
a212
a222

[Gottwald & Harlim 2013].



Numerical Results: True filter vs RSF
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Actual error covariance estimate =
1

T

T∑

m=1

(xm − x̂m)
2

Steady state filter error covariance estimate = E[(x − x̂)2].
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Improved mean estimates, but the covariance estimates are still
underestimated for large ǫ!



Numerical Results: True filter vs Linear Theory
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Linear Theory: Climatological Statistics

On the other hand, the climatological statistics of the
two-dimensional true model are given by:
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x + σ2
y
a212
a222

)

2ã(1− ǫâ)
+O(ǫ2)
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For the 1D model dX = α dt + σ dW , the corresponding statistics
are

Var(X ) =
σ2

2α
TX =

1

α

So by matching these climatological statistics, we obtain the
optimal parameters. This is an offline parameterization method,
known as “Mean Stochastic Model” [Majda & Harlim 2012].
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Nonlinear Test model

Consider [Gershgorin, Harlim, Majda 2010]:

du

dt
= −λuu + b̃ + γ̃u + σuẆu,

db̃

dt
= −λbb̃ + σbẆb,

d γ̃

dt
= −λγ γ̃ + σγẆγ ,

Consider observations dz = u dt +
√
RdV .

We find that the optimal reduced model is given by:

dU = −αUdt + βU ◦ dWγ + σ1dWu + σ2dWb,

for an appropriate choices of parameters α, β, σ1, σ2.



Numerical solutions
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Inappropriate Stochastic Parameterization (β = 0)

0.5 1 1.5 2 2.5 3

2

3

4

5

6

7

8

0.
82

0.82

0.
83

0.
83

0.83

0.83

0.
84

0.
84

0.84

0.84

0.84

0.
85

0.
85

0.85
0.85

0.85

0.86

0.86

0.87

0.87

0.88

0.88

0.89 0.9 0.91

Re(α)

σ 12 +σ
22

RMSE



Inappropriate Stochastic Parameterization (β = 0)

0.5 1 1.5 2 2.5 3

2

3

4

5

6

7

8

0.
82

0.82

0.
83

0.
83

0.83

0.83

0.
84

0.
84

0.84

0.84

0.84

0.
85

0.
85

0.85
0.85

0.85

0.86

0.86

0.87

0.87

0.88

0.88

0.89 0.9 0.91

Re(α)

σ 12 +σ
22

RMSE

On the other hand, the theoretically found model without β (which
RMSE=0.54) underestimates the the variance by 83% and
correlation time by 52%.



Strategies for high-dimensional problems with model errors

Consider the two-layer Lorenz-96 model as the truth,

dxi

dt
= xi−1(xi+1 − xi−2)− axi + F +

hx

M

M∑

j=1

yi ,j ,

ǫ
dyi ,j

dt
= yi ,j+1(yi ,j−1 − yi ,j+2)− yi ,j + hyxi ,

where ~x and ~y are vectors in R
N and R

M respectively and the
subscript i is taken modulo N and j is taken modulo M.
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Consider the two-layer Lorenz-96 model as the truth,

dxi

dt
= xi−1(xi+1 − xi−2)− axi + F +

hx

M

M∑

j=1

yi ,j ,

ǫ
dyi ,j

dt
= yi ,j+1(yi ,j−1 − yi ,j+2)− yi ,j + hyxi ,

where ~x and ~y are vectors in R
N and R

M respectively and the
subscript i is taken modulo N and j is taken modulo M.
Given Model:

dxi

dt
= xi−1(xi+1 − xi−2)− axi + F

Proposed Reduced Filter Model:

dxi

dt
= xi−1(xi+1 − xi−2)− axi + F−αxi +

N∑

j=1

σijẆj +

N∑

j=1

βij ◦ xj V̇j



Offline Regression-based Method

[Wilks 2005, Arnold, Moroz, and Palmer 2012]

Given training set xi (t),

◮ Compute
U(xi , t) ≡ xi−1(t)(xi+1(t)−xi−2(t))−axi (t)+F− xi (t+δt)−xi (t)

δt
.

◮ Linear regression fitting to a cubic polynomial:
U(xi , t) ≈ b0 + b1xi(t) + b2xi (t)

2 + b3xi(t)
3.

◮ Take the residual of this fit and apply a second linear
regression fitting to an AR(1) model,

We consider this fitting strategy to obtain α and σ on

dxi

dt
= xi−1(xi+1 − xi−2)− axi + F−αxi + σẆi

that is, apply regression to a linear model U(xi , t) ≈ −αxi(t) and
the residual to white noise, σẆi .



Online Parameterization Method to obtain α and σ

◮ We concatenate the dynamics with dα/dt = 0 and apply
EnKF.

◮ We use method developed by [Berry and Sauer 2013] to get
σ, which is a reincarnation of [Mehra 1970] on EnKF
framework. One can also use the noise estimation method in
[Harlim, Mahdi, Majda 2014] which is a reincarnation of
[Belanger 1974] on EnKF framework.

◮ Idea: Recursively, use the innovation vector at many lags to
estimate σ.

◮ Note: We do not use any training data set and we also
estimate R simultaneously.

◮ For multiplicative noise, we don’t know how to do it properly,
so we set β = 0.



Numerical results (x ∈ R
8, y ∈ R

256)

Observe all x ∈ R
8 (left) and every other grid point (right)
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Ensemble size doubles the total state.
Online method does not use any training data set and also
estimate R simultaneously.



Climatological Statistics
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◮ Linear Theory: There exists a stochastic parameterization for
optimal filter and accurate climatological statistics (they are
in the form of linear damping and additive noise forcing).

◮ For nonlinear, non-Gaussian configuration, our example
suggests an additional multiplicative noise forcing.

◮ When the appropriate parametric form is unknown, one can
get good filtering but bad climate model or vice versa.

◮ When the appropriate parametric form is known, a natural
parameter estimation method is online (as part of the filtering
procedure).

◮ There is nothing inherently wrong with offline
parameterization method. For e.g., MSM works in linear and
Gaussian setting since the statistics are stationary in this
situation.
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Summary:

◮ The offline method we considered fits the bias and random
parts of model errors separately, while the online method we
considered simultaneously account for the nonlinear feedback
of each perturbed parameters.

◮ Many practical approaches considered estimating either the
mean model error (forecast bias), assuming certain structure
on the covariance. On the other hand, there are also methods
assume model error is completely unbiased random variables
and design various covariance inflation methods.

◮ What we found from this academic exercise is that we need to
estimate both (or even higher order) statistics simultaneously
especially in nonlinear problems, they are simply the first
two-moments of a stochastic process that describe model
error estimator.


