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Evaluate observation impact in a hybrid data assimilation system using
ensemble statistics and validate them with adjoint methods
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Sensitivity Theory

@ state vector, perturbation, ensemble matrix: x, dx, 6X

o forecast metric, perturbation, ensemble vector: J, 6J, 4J
@ analysis time, verification time: tg, t

o TLM: Mt,to =M st Megses - Myise s
e ADJ: M}:to =MT ~-~ME+5M_ -..MT

to+dt,ty

t,t—ot
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Adjoint Sensitivity Theory

Linearized dynamics and metric response:
0x¢ ~ My ¢, 0%y,

04"
0J ~ 87 5Xt

Xt
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Adjoint Sensitivity Theory

Linearized dynamics and metric response:

0X¢ = My 10Xy,

0J"
0J ~ 87)% 5Xt
84" 81" 84"
0J ~ 87)(1; Mt7t0§xt0 = |:Mrt1jto aXt:| 5Xt0 = aTtO 5Xto
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Adjoint Sensitivity Theory

Linearized dynamics and metric response:

0X¢ = My 10Xy,

oJ 7T
0J ~ 87)% 5Xt
84" 8J71" 0"
0J ~ 87)(1; Mt7t0§xt0 = |:Mrt1jto aXt:| 5Xt0 = aTtO 5Xto
oJ aJ oJ
%, = M;F,tgaixt = M?}:Jrét,to T ME+5t,t; U M;l:t—&aixt
0
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Ensemble Sensitivity Theory

0J and dx are random variables, assume Gaussian distributed:

@ Let {-} denote expectation.
o P = {6x,0x¢ } = cov (X4, Xy,) denote error covariance matrix

0J

= §Xt
Oy, 0

Ancell and Hakim 2007
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Ensemble Sensitivity Theory

0J and dx are random variables, assume Gaussian distributed:

@ Let {-} denote expectation.
o P = {6x,0x¢ } = cov (X4, Xy,) denote error covariance matrix

0J =

§Xt0

x4,

0J "
{5J5XEO‘ = 871.0 (Sxto(sx;l;}

oJ "
{6J6X’£ = 8Tto {5Xt05Xt0}
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Ensemble Sensitivity Theory

0J and dx are random variables, assume Gaussian distributed:

@ Let {-} denote expectation.
o P = {6x,0x¢ } = cov (X4, Xy,) denote error covariance matrix

0J "
{5J5XEO‘ = 871.0 (Sxto(sx;l;}

oJ "
{6J6X’£ = 8Tto {5Xt05Xt0}

T
cov (J,Xy,) = 867{ P
0

Ancell and Hakim 2007
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Adjoint v/s Ensemble Sensitivity Theory

Ensemble method recovers adjoint sensitivity
0 — P~tcov (Xq,d) = MT, 22

Oxy, t,to Ox;

@ Simultaneous multivariate regression
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Adjoint v/s Ensemble Sensitivity Theory

Ensemble method recovers adjoint sensitivity
2L = Plcov(Xy, ) = MY, 22

Oxy, t,to Ox;

@ Simultaneous multivariate regression

Ensemble Sensitivity - Pros and Cons

Pros

@ No adjoint model is required.

@ No assumptions about on/off or moist processes.

o Rapidly evaluate many J (cf. new adjoint run for each J).
°

Can apply statistical significance testing.
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Adjoint v/s Ensemble Sensitivity Theory

Ensemble method recovers adjoint sensitivity
2L = Plcov(Xy, ) = MY, 22

Oxy, t,to Ox;

@ Simultaneous multivariate regression

Ensemble Sensitivity - Pros and Cons

Pros

@ No adjoint model is required.

@ No assumptions about on/off or moist processes.

o Rapidly evaluate many J (cf. new adjoint run for each J).
°

Can apply statistical significance testing.

Cons

@ Sampling error.

e Computing P~ is impractical for high-dimensional problems.
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Observation Impact

obs
> f
ya .
t t

Langland and Baker 2004
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Observation Impact

Adjoint Framework

KT =KT

0 _ yerpgr. 09

KT
J; t,ty ©
0%, 0 Oxr
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Observation Impact

Adjoint Framework

KT = KT

0 _ yerpgr. 09

KT
J; t,ty ©
0%, 0 Oxr

K =BHT [HBH” +R] ' = AH"R
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Observation Impact

Adjoint Framework

KT = KT

0 _ yerpgr. 09

KT
J; t,ty ©
0%, 0 Oxr

K =BHT [HBH” +R] ' = AH"R

Ensemble Framework

KT % =K"B 'cov(X,,J,) = [HBHT +R] " cov(HX,,],)

v s

K OX,

= KTA "cov (X,, J¢) =R 'cov (HX,, Jf)
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Hybrid Data Assimilation System

Clx) = 5 e —xs]" By [x = x6] + 5 [Hxo 3] R [Hxs — ]

By =(1-f)B.+ fBeol
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Model and DA Configuration

Lorenz 1996

oX;
ot

| = 40
F = 8.0 (perfect model), 8.4

v

Three-D Var

B derived from very long
integration with EnKF
EnSRF, Ne = 20

Inflation = 2%
Localization = 4 points
Bs = 0.25, Be = 0.75

= (Xiy1 — Xiz2) Xici — Xi + F
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Tuning the hybrid data assimilation system

RMSE - 3DVar RMSE - EnKF

T 1. T T T

0.2

Prior RMSE
Posterior RMSE
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Observation Impact Experiments

Varying Observation Location Varying Observation Quality

o H=1: All 40 observed @ R =1 : Uniform ob. quality
@ H = 2: Alternate 20 observed @ R =2: Alternate good/bad ob.
o H = 3 : Random 20 observed e R =3 : Random ob. quality

!
Forecast error metric = J = Total Energy = 3 (xf — x,)°
i

(63, — 63,)/63,

3 ? ? ?
2t ? ? ?
1 ? ? ?
1 2 3

H
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Experiment H=1 R =1

Adjoint-based
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Experiment H =3, R =3

Random 20 obs., Random quality

@ assimilate obs. at all locations

@ all obs. have same obs. error

&J

5 =57, + 8,

1
100
50
0
=50
—100
mean aJ, : -8.5817 +/- 26.9505
—150
me 581 +/- 20,816
—20 o 100 200 300

Assimilation Step
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Experiments - Result Summary

(43, — 63,)/63
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Summary and Future Work

Ensemble-method recovers adjoint sensitivity

Applied ensemble sensitivity and validated against adjoint method
based observation impact in Lorenz 1996.

Explore ensemble technique in a full NWP system.

Extend observation impact to 4DEnsVar.

Explore localization in observation impact calculations
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