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KIAPS-LETKF Data Assimilation System 

 KIAPS-LETKF data assimilation system has 
been developed for cubed-sphere grid 
model (e.g. NCAR CAM-SE, KIAPS-GM now 
being developed).   

 We have examined the KIAPS-LETKF system 
in various simulation experiments, and 
have successfully assimilated real data 
(conventional data from NCEP prepbufr) 
into the system. 
– Posters of Dr. Jung and Ms. Jo 

 Now, (AMSU-A and IASI) radiance data 
assimilation using RTTOV and GPS RO data 
assimilation using ROPP are in progress.  

 We also would like to estimate observation 
impact using EFSO technique introduced by 
Kalnay et al. (2012) within KIAPS-LETKF.  

Unstructured grid on the cubed sphere 



Ensemble Forecast Sensitivity to Observations (EFSO) 

(Ota et al. 2013) 

 Estimating forecast sensitivity to 
observations, without TLM/ADJ of 
the model 

– Kalnay et al. (2012) has introduced a 
simple formula to estimate forecast 
sensitivity to observations, within an 
ensemble data assimilation cycle. 

– Ota et al. (2013) has applied the 
method of Kalnay et al. (2012) to 
NCEP GFS-EnSRF data assimilation 
system and has shown promising 
results. 

We decided to implement this   
     method to KIAPS-LETKF system 
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Ensemble Forecast Sensitivity to Observations (EFSO) 

 Forecast error reduction is defined as  

– Here,                        ,                            (      should be the best estimate 
of true atmosphere), and Cjj is a total moist energy norm.   

 EFSO formula introduced by Kalnay et al. (2012) 
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Example of 24-hr forecast error reduction estimates 



(Kalnay et al. 2012) 

How to move a localization function (Kalnay et al., 2012) 

 In order to estimate observation impact 
at time t, forecast fields valid at t+τ are 
used.   
– Observation impact tends to be advected 

and diffused as a result of atmospheric 
flow during the forecast hours 

 

 
 

 

 We need to localize information 

 Kalnay et al. (2012) shows different 
results from several localization 
functions 
– As τ increases, no localization case gives 

better performance 

A 

B 

observation 



Localization Function in Kalnay et al. (2012) 

 NoLoc gives better results than other localization function cases (NL-loc 
and CL-loc) as the forecast lead time increases. 

 NL-loc is not feasible for real case due to too much computational cost, 
but CL-loc has significant underestimation. 

 Therefore, we would like to try modifying localization function not only 
moving the center but also chaning the radius of the function. 
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(Kalnay et al. 2012) 

How large the localization scale should be? 

 We have estimated a time mean of nonlinear localization 
function (Nl-Loc) of Kalnay et al. (2012). 

As forecast lead time gets longer, the center of 
the localization function has been shifted.   
Also, localization scale gets remarkably larger! 
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How large the localization scale should be? 

 We have estimated a time mean of nonlinear localization 
function (Nl-Loc) of Kalnay et al. (2012). 

As forecast lead time gets longer, the center of 
the localization function has been shifted.   
Also, localization scale gets remarkably larger! 

Localization function 

(WdLoc) 



Simple Experiment with Lorenz 40-var model 

 We have reproduced the table as shown in the previous slide and 
compare our estimation with a different localization function. 

 

 

 

 

 
 

 Results show that WdLoc consistently outperforms ClLoc and 
NlLoc when the forecast lead time is greater than 6 hour. 
– NlLoc takes too long (~ four times slower than others) 

 Thus, we conclude that localization scale changes the results 
significantly.  In order to improve the result, we need to consider 
more sophisticated localization function in terms of its width. 

6 h 12 h 1 d 2 d 3 d 5 d 7 d 

Truth -23.4 -32.4 -56.06 -121.76 -214.38 -584.14 -1139.08 

Analysis -24.96 -30.74 -51.12 -115.06 -206.76 -572.46 -1121.2 

FxLoc -28.28 -33.54 -50.12 -86.46 -107.82 -124.52 -155.46 

NoLoc -31.84 -38.62 -62.48 -133.68 -227.8 -582.82 -1224.4 

ClLoc -28.28 -33.54 -53.86 -99.88 -151.88 -284.66 -451.14 

NlLoc -24.26 -24.4 -47.54 -107.26 -177.9 -416.3 -763.68 

WdLoc -28.38 -33.54 -57.5 -118.98 -201.1 -509.34 -1033.92 
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Findings from Lorenz model experiments 

 Tuning width of localization function with respect to forecast 
lead time changes results significantly. 

– Use of greater localization scales for longer forecast lead time 
improves the estimation of EFSO 

 In more realistic system, it is not easy to define climatological 
localization scales as the case of Lorenz 

– We have considered several ways to tune the localization scales 
adaptively. 



Localization function of Ota et al. (2013) – (0) 

 Moving the center of localization functions 

– without changing a localization scale  

– “The coefficient that multiplies the average horizontal wind is tuned” 

 

 

 

 

 

 

 

 

 

 

 Since it already computes displacement in zonal and meridional 
directions, we may use those values for the width of localization function 

A 

B 

observation 

Information at the forecast time, 
collected for estimating an impact of 
the observation at A 

V=(u,v) 

Δx = uΔt  dlon 

Δy = vΔt 

 dlat 



A 

B 

observation Information at the forecast time, 
collected for estimating an impact of 
the observation at A 

 Changing localization scale based on the moving distance 

– Circular shape of localization function as a standard 

– Its radius is defined by r + sqrt(Δx2 + Δy2) 

 

 

 

 

 

 

Various localization functions for EFSO – (1) 

(Kang et al. 2014, in prep.) 
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 Computational burden is increased alot… 

 Δx and Δy tend to be very much different 

– Suppose a jet region: Δx >> Δy  

Various localization functions for EFSO – (1) 

(Kang et al. 2014, in prep.) 

r 
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B 

observation Information at the forecast time, 
collected for estimating an impact of 
the observation at A 

Various localization functions for EFSO – (2) 

 Changing localization scale based on the moving distance of x- 
and y-direction separately 

– Elliptic shape of localization function based on ΔX (dlon) and ΔY (dlat) 

 

 

 

 

 

 

 Computational cost is less than the previous treatment although 
it’s costly than Ota et al. (2013) 

 

(Kang et al. 2014, in prep.) 



 KIAPS-LETKF system implemented to NCAR CAM-SE model 

 

 

 

 

 Impact of localization strategies 

– Compute                                         at every model grid point, Jm 

– Compute the same J, but at the observation space with different 
localization functions, Jo 

– Compare global mean of Jm and Jo  

  NO EFSO formula incorporated! 

 Assuming perfect FSO formula (w.r.t. truth), we can see the impact 
of localization function only. 

Experimental Design 

   

– Resolution: ne16np4 (~2.5˚) with 30 levels (~2hPa 
top) 

– Observing System Simulation Experiments (OSSEs)  

Sonde, surface Ps, and AIRS T and q retrieval data 
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True forecast error reduction Jm 

 As expected, forecast error reduction (Jm) becomes greater as the 
forecast lead time gets longer. 

 We will see how the estimations obtained at the observation space (Jo) 
with different localization methods look. 

Time series of global mean Jm 



Ota new elp 

Jm vs. Jo with different localization functions (τ=6hr) 

Jm Jo_FxLoc Jo_MV_Ota Jo_MVnew Jo_MVelp 

Time mean -0.663 -0.773 -0.717 -0.735 

(τ= 6hr) 

Perfect formula of J 
(No EFSO formula, but different localization strategies) 

FxLoc 



Jm vs. Jo with different localization functions (τ=24hr) 

(τ= 24hr) 

Perfect formula of J 
(No EFSO formula, but different localization strategies) 

Jm Jo_FxLoc Jo_MV_Ota Jo_MVnew Jo_MVelp 

Time mean -0.824 -0.920 -0.934 -0.873 -0.883 

Ota new elp FxLoc 



Jm vs. Jo with different localization functions (τ=60hr) 

 

(τ= 60hr) 

Jm Jo_FxLoc Jo_MV_Ota Jo_MVnew Jo_MVelp 

Time mean -1.49 -1.69 -1.62 -1.55 -1.57 

Perfect formula of J 
(No EFSO formula, but different localization strategies) 

Ota new elp FxLoc 



Summary and Plans 

 Different strategies of localization function for estimating EFSO 
have been investigated.   

– We have shown that tuning localization scales gives positive impact 
on the result, using Lorenz model and OSSEs with KIAPS-LETKF. 

– OSSEs of KIAPS-LETKF system will also quantify how much EFSO 
estimates can be degraded by imperfect forecast error estimates 
(due to imperfect analysis), EFSO formula, etc. 

– We are generating EFSO estimates now and will analyze the results 
carefully. 

 

 We will test this technique in KIAPS-LETKF with real data 
(conventional data, AMSU-A and IASI radiance data, and GPS RO 
data), which are in progress. 


