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=  KIAPS-LETKF data assimilation system has
been developed for cubed-sphere grid /
model (e.g. NCAR CAM-SE, KIAPS-GM now ((f/aZes < Sof
being developed). W

= We have examined the KIAPS-LETKF system Wi~
in various simulation experiments, and )
have successfully assimilated real data
(conventional data from NCEP prepbufr)
into the system.

— Posters of Dr. Jung and Ms. Jo

= Now, (AMSU-A and IASI) radiance data
assimilation using RTTOV and GPS RO data —

assimilation using ROPP are in progress. ~ L J—— -
Unstructured grid on the cubed sphere A

= \We also would like to estimate observation
impact using EFSO technique introduced by
Kalnay et al. (2012) within KIAPS-LETKF.
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Forecast Sensitivity to Observations (EFSO)

= Estimating forecast sensitivity to
observations, without TLM/ADJ of
the model

— Kalnay et al. (2012) has introduced a
simple formula to estimate forecast
sensitivity to observations, within an
ensemble data assimilation cycle.

— Ota et al. (2013) has applied the
method of Kalnay et al. (2012) to
NCEP GFS-EnSRF data assimilation
system and has shown promising
results.

=>» We decided to implement this
method to KIAPS-LETKF system

Fig. 2. LEstimated average 24-hour forecast error reduction
contributed from each observation types (moist total energy,

J kg ]). (a) represents the total error reduction and (b) represents

error reduction per observation.
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* Forecast error reduction is defined as J =¢,,C e, -, ,C;€,,
_f R
— Here, €p=Xwo—X, €,,= th|—6 — X, (X, should be the best estimate
of true atmosphere), and C; is a total moist energy norm.
= EFSO formula introduced by Kalnay et al. (2012)
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= |n order to estimate observation impact 2
at time t, forecast fields valid at t+t are 1
used.

— Observation impact tends to be advected
and diffused as a result of atmospheric
flow during the forecast hours

0.8

0.6

JIVAVL
0.2 —

0

Localization function

____________________________________

1.2

observation!
! 1

0.8

EE— B
= We need to localize information

" Kalnay et al. (2012) shows different - /
results from several localization 0 e N
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Localization function

fu nCtlonS —0 day 2 days —5 days - 10 days
— As tincreases, no localization case gives ) ‘ o o
Fig. 5. Example of the evolution of the localization function
better performance with two methods. (a) Localization function with the non-linear

incremental evolution|(NL-loc)] and (h)_ localization function

KIAPS moving with constant group velociLyE(CL-loc).E
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Table 2. Same as Table 1 but with 10 ensemble members and localization when indicated

6 h 12 h 1d 2d 3d 5d 7d
Truth —23 (0) —32(0) —56 (0) — 121 (2) — 213 (6) — 582 (27) — 1144 (47)
Analysis —25 (0) —31 (0) —51 (0) —115 (2) —206 (6) —570 (27) — 1126 (46)
(4-ADJ) —21 (0) —25 (0) —39 (0) —77 (1) —132 (4) —344 (17) —627 (52)
(5-OLD) Noloc —12 (0) — 14 (0) —24 (1) —50 (3) — 69 (4) 136 (22) 1163 (65)
(6-NEW)| Noloc —32 (0) —39 (0) —62 (1) — 133 (4) — 227 (6) —574 (41) — 1220 (80)
(5-OLD) Fxloc —25 (0) —30 (0) —47 (0) —89 (2) —117 (4) —9(9) 486 (29)
(6-NEW) Fxloc —28 (0) —33 (0) — 50 (0) — 86 (2) — 106 (4) — 125 (11) — 162 (29)
(6-NEW) NL-loc —24 (0) —24 (0) —47 (0) —107 (2) — 178 (4) —422 (27) — 788 (57)
(6-NEW): CL-loc —28 (0) —33(0) — 54 (0) —99 (2) 151 (5) —284 (18) —462 (30):

l .
P T T . 2 N —lIxra /T
A Truth/Analysis: J = ethC ii€o —etl_GC iiC6 (6-NEW): (Ae )./‘.l: X1 (9y,), [l’_,-R % (qu)jc/_y <er|() + e/|—6>/.]/

= Noloc gives better results than other localization function cases (NL-loc
and CL-loc) as the forecast lead time increases.

= NL-locis not feasible for real case due to too much computational cost,
but CL-loc has significant underestimation.

= Therefore, we would like to try modifying localization function not only
moving the center but also chaning the radius of the function.
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= We have estimated a time mean of nonlinear localization

function (NI-Loc) of Kalnay et al. (2012).

As forecast lead time gets longer, the center of
the localization function has been shifted.
Also, localization scale gets remarkably larger!

KIAPS
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Fig. 5.  Example of the evolution of the localization function
with two methods. (a) Localization function with the non-linear
incremental evolution (NL-loc¢); and (b) localization function
moving with constant group velocity (CL-loc).



= We have estimated a time mean of nonlinear localization

function (NI-Loc) of Kalnay et al. (2012).
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As forecast lead time gets longer, the center of

the localization function has been shifted.
Also, localization scale gets remarkably larger!
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Fig. 5.  Example of the evolution of the localization function
with two methods. (a) Localization function with the non-linear
incremental evolution (NL-loc¢); and (b) localization function
moving with constant group velocity (CL-loc).



| )le Experiment with Lorenz 40-var model

= We have reproduced the table as shown in the previous slide and
compare our estimation with a different localization function.

| 6h | 12h | 1d | 2d | 3d | 5d | 7d |

Truth -23.4 -32.4 -56.06 -121.76 -214.38 -584.14 -1139.08
-24.96 -30.74 -51.12 -115.06 -206.76 -572.46 -1121.2

xLoc -28.28 -33.54 -50.12 -86.46 -107.82 -124.52 -155.46
NolLoc -31.84 -38.62 -62.48 -133.68 -227.8 -582.82 -1224.4
ILoc -28.28 -33.54 -53.86 -99.88 -151.88 -284.66 -451.14
-24.26 -24.4 -47.54 -107.26 -177.9 -416.3 -763.68

WdLoc -28.38 -33.54 -57.5 -118.98 -201.1 -509.34 -1033.92

= Results show that WdLoc consistently outperforms ClLoc and
NiLoc when the forecast lead time is greater than 6 hour.

— NILoc takes too long (~ four times slower than others)

= Thus, we conclude that localization scale changes the results
significantly. In order to improve the result, we need to consider
more sophisticated localization function in terms of its width.

KIAPS
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Findings from Lorenz model experiments

= Tuning width of localization function with respect to forecast
lead time changes results significantly.

— Use of greater localization scales for longer forecast lead time
improves the estimation of EFSO

" |n more realistic system, it is not easy to define climatological
localization scales as the case of Lorenz

— We have considered several ways to tune the localization scales
adaptively.

KIAPS
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.‘E“ |zat|on function of Ota et al. (2013) —(0)

o\ |

= Moving the center of localization functions
— without changing a localization scale
— “The coefficient that multiplies the average horizontal wind is tuned”

Sw
1 i 1
1
___________________________________
\ 1
1

Ax = uAt = dion
V=(u,v)

observation!

Ay = VAt -
9y dlat . Information at the forecast time,
B " collected for estimating an impact of
the observation at A
1 .
2 L —lxra 1T
(Ae”), = X1 (9%), [ij Yy (qu) ].Cy' (erlo T erl—6) j] ;

" Since it already computes displacement in zonal and meridional

directions, we may use those values for the width of localization function
KIAPS



= Changing localization scale based on the moving distance

-_—
P -

Calization function-as a standard

— Its radius is-defined by r + sqrt(Ax? + Ay?)
1 I
(Ae%), ;= —— (%), [PJR lYo( fg)jcfy (ezm + ez—6)_].] ;

_________________________________

lnformation at the forecast time,
/ | ed for estimating an impact of
| i ' )servation at A

(Kang et al. 2014, in prep.)
KIAPS



= Changing localization scale based on the moving distance

-—
" -

— Circular shape of4otalization function-as a standard

— Its radius is-defined by r + sqrt(Ax? + Ay?)
1 ey
(Aez),,-,z: K1 (5)’0); [ij IYO( §|§>] G (ezlo + et_(,)j] ;

_________________________________

Sinformation at the forecast time,
gcted for estimating an impact of
pservation at A

= Ax and‘\Ay tend to be very much different
— Suppose a jet region: Ax >> Ay

(Kang et al. 2014, in prep.)
KIAPS



= Changing localization scale based on the moving distance of x-
and y-direction separately

— Elliptic shape€ of localization function based on AX (dlon) and AY (dlat)

Information at the farecast time,
follected for estimating an impact of
pbservation at A |

obsefrvati

. Computé‘tional cost is less than the previous t/réatment although
it’s costly than Ota et al. (2013) /

(Kang et al. 2014, in prep.)
KIAPS



Experimental Design

top)
— Observing System Simulation Experiments (OSSEs)
» Sonde, surface Ps, and AIRS T and q retrieval data

= |mpact of localization strategies

— Compute J=e;,C,e,, —€;,C;e.s at every model grid point, Jm

— Compute the same J, but at the observation space with different
localization functions, Jo

— Compare global mean of Jm and Jo
» NO EFSO formula incorporated!

=» Assuming perfect FSO formula (w.r.t. truth), we can see the impact
of localization function only.

KIAPS
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" As expected, forecast error reduction (Jm) becomes greater as the
forecast lead time gets longer.

= We will see how the estimations obtained at the observation space (Jo)
with different localization methods look.

KIAPS
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- \\ Summary and Plans

= Different strategies of localization function for estimating EFSO
have been investigated.

— We have shown that tuning localization scales gives positive impact
on the result, using Lorenz model and OSSEs with KIAPS-LETKF.

— OSSEs of KIAPS-LETKF system will also quantify how much EFSO
estimates can be degraded by imperfect forecast error estimates
(due to imperfect analysis), EFSO formula, etc.

— We are generating EFSO estimates now and will analyze the results
carefully.

= We will test this technique in KIAPS-LETKF with real data
(conventional data, AMSU-A and IASI radiance data, and GPS RO
data), which are in progress.
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