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The Problem

One of the presumed advantages of EnKF over a
conventional data assimilation system is that it generates
an ensemble of analyses, which is consistent with the
estimate of the analysis uncertainty provided by the data
assimilation system, for the ensemble forecasting system.
Do we have convincing evidence to claim success in this
area? I would say “no”. (Not much has been said about the
topic at this meeting)
Potential sources of the difficulties:

Inherent limitations of EnKF, in particular, using a small
ensemble
Sub-optimality of the particular ensemble system

How can we diagnose these sources?



Local State Vector

We define a local state vector x` with all N state variables of
the model representation of the state within a local volume
centered at location (grid point) `
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Scalar quantities computed based on grid points values within the local
volume are assigned to the center of the horizontal domain of the
local volume



The Local Space of Ensemble Perturbations, S`

Given is a K -member ensemble of local forecasts:

{x(k)
` , k = 1 . . .K}

The local ensemble mean:

x̄` = K−1
K∑

k=1

xe(k)
`

The local ensemble perturbations:

{x′(k)` = x(k)
` − x̄`, k = 1 . . .K}

The ensemble-based estimate of the local covariance
matrix:

P̂` = (K − 1)−1
k∑

k=1

x′(k)`

(
x′(k)`

)T
,



The Dimensionality of S`

The range of P̂` (spanned by the K ensemble
perturbations) defines a linear space S` [dim(S`) ≤ K − 1]
The normalized eigenvectors associated with the first
K − 1 eigenvalues of P̂`,

{uk , k = 1, . . . ,K − 1}

define an orthonormal basis in S`
The basis vectors represent linearly independent patterns
of uncertainty in the ensemble perturbations in the local
region at `.



Decomposition of the Local Forecast Uncertainty

We define the local forecast uncertainty as

δx` = xt
` − x̄` = δx(‖)

` + δx(⊥)
`

where xt
` is (an estimate of) the true local state

The local ensemble spread, VS` = trace(P̂`), is an
estimate of the TV` expected value of ‖δx`‖2 => the
expected value, VS, of VS` over all locations and
verification times, should be equal to the expected value,
TV , of TV` over all locations and verification times.
The projection of δx` into S` is δx(‖)

` . We introduce the

notation TVS for the expected value of
(
δx(‖)

`

)2

When δx` can be expressed as a linear combination of the
ensemble perturbations, δx(‖)

` = δx` and TVS = TV



Analysis-Forecast System

Data Assmilation: Local Ensemble Transform Kalman
Filter with 40 ensemble members. (Szunyogh et al. 2008)
Model: 2004 version of NCEP GFS at resolution T62
(about 210 km) and 28-levels
Statistics: Collected for 45 days (January and February
2004), all results shown are for NH extratropics
Observations: (Non-radiance) observations of the
atmosphere
Variance Inflation: Was tuned to satisfy VS ≈ TVS (larger
VS was found to degrade the analyses and ensuing
forecasts)
Most Results were summarized in Satterfield and
Szunyogh (2010, 2011) and Szunyogh and Satterfield
(2011)



Time Evolution of the Power Spectrum of the Forecast
Error (Meridional Wind at 500 hPa)
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The Evolution of VS, TV , and TVS with Forecast Time

For forecast times longer than about 3 days, S` provides a good
representation of the state xt

`, but the ensemble underestimates
the magnitude of δxt

`

1

10

100

1000

10000

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360

lead time (hr)

TV
TVS
VS

J/kg



Why Does the Spread Underestimate the Uncertainty
(Even at Times When S` Is Captured Well?)

Potential Answers:
Lack of accounting for the effects of model uncertainties
Inherent limitations of EnKF using a small ensemble (e.g.,
lack of accounting for patterns of uncertainty in the initial
conditions, which later pay an important role in the
evolution of the forecast uncertainty; assumption of linear
error dynamics)
Sub-optimality of the data assimilation system, which
generates the initial perturbations



Results with Simulated Observations

The general problem remains, although the magnitude of the
underestimation of the uncertainty is less severe

1

10

100

1000

10000

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360

lead time (hr)

TV
TVS
VS



Lorenz Curve for Uncertainty with Simulated
Observations

dE
dt = αE

(
1− E

E∞

)
= − α

E∞
E2 + αE (Lorenz 1982)
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Lorenz Curve for Simulated Observations

 

 

Model Forecast
Fitted 2nd Order Polynomial



Lorenz Curve for Real Observations
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Model Forecast
Fitted 2nd Order Polynomial

dE
dt = (αE + β)

(
1− E

E∞

)
(Dalcher and Kalnay 1986)



Comparison of Estimated Parameters

Parameter Sim. Obs. Real Obs. Sim. Obs. Sp. Real Obs. Sp.
α 0.46 0.49 0.43 0.31
eα 1.58 1.63 1.54 1.37
β 43 226 36 60
E∞ 6843 8437 6109 5558

As expected, β and E∞ are larger when model errors are
present
The parameter α tends to be larger for the uncertainty than
the spread (only slightly when model errors are not
present, and by a large margin where model errors are
present)
When model errors are present, α is much smaller for the
spread than the uncertainty (balance issues?)



Concluding Remarks

We proposed a linear diagnostic tool to investigate the
performance of the ensemble even at forecast times,
where the evolution of the ensemble is highly nonlinear
The Lorenz curve for the uncertainty and its time derivative
provides a good approximation for the spatio-temporally
averaged evolution of the magnitude of the forecast errors
One can take advantage of the above properties when
tuning such components of EnKF, as the representation of
the effect of model uncertainty


