
The Kalman-Bucy filter (KBF, Kalman and Bucy, 1961) can be used in an 
ensemble  data assimilation framework with discrete-time observations. 
 
Let                  represent the state variables,                 the observations and  
                        the observational matrix operator.  
 
The ensemble can be represented as                                                         and the 
ensemble of perturbations as:                                                              , where  
     is the ensemble mean. 
 
Bergemann et al. (2009) showed that the update for the ensemble of 
perturbations can be expressed as the solution of the following ODE: 
    
   (1) 
 
 
where the initial condition is the background                    ,                  is called 
pseudo-time and the integration yields the analysis as                    . The mean is 
updated as in the original KF. Bergemann and Reich (2010) showed that the full 
ensemble can be updated as the solution of the following ODE: 
 
   (2) 
 
 
where              and (2) is integrated from the background                     to obtain 
the analysis                     . 
 
Amezcua et al. (2012) showed that both ODEs can stiffen when the ratio of 
background error covariance to observational error covariance becomes large: 
    (3) 
 
 
This happens for infrequent observations and sparsely observed areas. A 
diagonal semi-implicit (DSI) integration method that handles this stiffness and 
is not computationally expensive was proposed in Amezcua et al. (2012).: 
 
   (4) 
 
A similar scheme can be used for the full ensemble. Note that the inversion is 
performed on a diagonal matrix, a number of (non-uniform) steps of order 
                         yields accurate results. 
 
The EKBF can be used to assimilate quasi-continuous observations and is 
amenable to non-Gaussian extensions. Moreover, it can help eliminate the 
jumps from background to analysis. The forecast/assimilation process can be 
expressed together in the following way: 
   (5) 
 
 
where            represents the right-hand-side of (4) and                    is the Dirac 
delta centered in the assimilation times. This Dirac delta can be mollified 
(Bergemann and Reich 2010a) :  
 
 
 
 
 
Figure 1. A typical feature of sequential data assimilation are the jumps from 
background to analysis (left panel). These can be eliminated by extending the 
impact of observations from an instant to a finite time  interval (right panel). 
The EKBF provides a suitable framework to do this in a simple way.  

In transform formulations of the EnKF, the update is performed by a post-
multiplication of the ensemble with a matrix of weights                         . For 
perturbations, the Ensemble Transform Kalman-Bucy Filter (ETKBF) is:  
 
   (6) 
 
with pseudo-time                    ,the initial condition                   , and the analysis  
                     , such that                        . For the full ensemble, the Direct 
Ensemble Transform Kalman-Bucy filter (DETKBF) is: 
 
   (7) 
 
 
integrated from                   to get                         such that   
 
 
 
 
 
 
 
 
 
 
Figure 2. Results from experiments with the 3-variable Lorenz 1963 model. 
These experiments use                                         , and multiplicative covariance 
inflation. Two observational frequencies are studied: every 8 integration steps 
(frequent) and every 25 steps (infrequent), the integration step is  0.01. The 
Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., 2007) is used as 
benchmark for comparison. Both ETKBFs achieve the performance of LETKF 
with 5 pseudo-time steps (frequent obs) and 8 steps (infrequent obs).  
 
In transform-based formulations, the operations are performed in the 
ensemble space, which is usually much smaller than the state space                . 
Moreover, these formulations can benefit from gridpoint R-localization (Hunt 
et al., 2007), as well as multiplicative adaptive covariance inflation (Miyoshi, 
2011), which avoids manual tuning.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Use of the ETBKFs in a medium complexity atmospheric global 
circulation model (SPEEDY; Molteni, 2003). Results shown for a well observed 
region (the Labrador Peninsula) and a poorly observed region (the Southern 
Pacific). In both cases, the performance of the LETKF is achieved. Statistics 
computed over a longer time period for all the atmospheric variables confirm 
this.  
 
Finally, the ETKBFs can benefit from post-processing techniques developed 
for transform methods. They include accurate low-resolution analyses by 
weight interpolation, a no-cost smoother, forecast sensitivity to observations 
without adjoint model, and Running in Place/Quasi Outer-Loop (Yang et al., 
2009; Kalnay and Yang 2010 ; Yang et al., 2012).  
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Abstract 
In this work, we show that (a) the Kalman-Bucy Filter (KBF) can indeed be used in EnKF applications, (b) the stiffness found in the ‘pseudo-time’ integration required in 

the Ensemble Kalman-Bucy filter is overcome with a Diagonal Semi Implicit (DSI) scheme, c) a new ensemble transform formulation is efficient for both the perturbations 
and for the full ensemble, (d) the performance of the new ensemble KBFs is comparable to the highly efficient LETKF (Hunt et al., 2007). 
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