The Kalman-Bucy Filter in the ensemble framework
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In this work, we show that (a) the Kalman-Bucy Filter (KBF) can indeed be used in EnKF applications, (b) the stiffness found in the ‘pseudo-time’ integration required in
the Ensemble Kalman-Bucy filter is overcome with a Diagonal Semi Implicit (DSI) scheme, c) a new ensemble transform formulation is efficient for both the perturbations
and for the full ensemble, (d) the performance of the new ensemble KBFs is comparable to the highly efficient LETKF (Hunt et al., 2007).
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Ensemble Kalman-Bucy Filters

The Kalman-Bucy filter (KBF, Kalman and Bucy, 1961) can be used in an
ensemble data assimilation framework with discrete-time observations.

N : :
Let X € R represent the state variables, Y € R" the observations and
H < fRLXN the observational matrix operator.

X ]e RVM and the

The ensemble can be represented as X = [Xl | X, |-
| X,, —X| , where

ensemble of perturbations as: X = [X1 —X| X, =X]| -
X is the ensemble mean.

Bergemann et al. (2009) showed that the update for the ensemble of
perturbations can be expressed as the solution of the following ODE:

dx 1

XXTHTRHX
ds  2(M-1)

(1)

where the initial condition is the background X(O) —XP 0<s<1liscalled
pseudo-time and the integration yields the analysis as X = X(1). The mean is
updated as in the original KF. Bergemann and Reich (2010) showed that the full
ensemble can be updated as the solution of the following ODE:

dX L XXTHTR™ 1HX+(H>—<—y)1T
ds  M-1 2

(2)

where 1 ¢ RV @ and (2) is integrated from the background )((()) — )=(b to obtain
the analysis X X(l)

Amezcua et al. (2012) showed that both ODEs can stiffen when the ratio of

background error covariance to observational error covariance becomes large:

B =HX* TR (HX") /(M 1) .

This happens for infrequent observations and sparsely observed areas. A
diagonal semi-implicit (DSI) integration method that handles this stiffness and
is not computationally expensive was proposed in Amezcua et al. (2012).:
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A similar scheme can be used for the full ensemble. Note that the inversion is
performed on a diagonal matrix, a number of (non-uniform) steps of order
O~ (1_10) vields accurate results.

X,., = X, ——PH" (diag(l + ASHP,H'R )] 'R HX,

(4)

The EKBF can be used to assimilate quasi-continuous observations and is
amenable to non-Gaussian extensions. Moreover, it can help eliminate the
jumps from background to analysis. The forecast/assimilation process can be
expressed together in the following way:

A

where A(X) represents the right-hand-side of (4) and §(t _tassim)is the Dirac
delta centered in the assimilation times. This Dirac delta can be mollified
(Bergemann and Reich 2010a) :
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Figure 1. A typical feature of sequential data assimilation are the jumps from
background to analysis (left panel). These can be eliminated by extending the
impact of observations from an instant to a finite time interval (right panel).
The EKBF provides a suitable framework to do this in a simple way.

References

rol. Soc., 136, 1636-1643. 95-108.

My h T.,2011. The Gau
f mKIm n filte inflation and its impleme ta
K Im fI M n. Weathe R ., 139, 1519- 1535

Molteni F., 2003. Atmospheric simulations using a GCM with
simplified physical parametrizations. I: Model climatology and
variability in multi-decadal experiments. Climate Dyn., 20, 175-191.

al. Ide K, Kalnay E. and Reich S., 2012. Ensemble meJRM
BK IhE dS yghl2007Eff nt data assimilat

a local ensemble

for efficient data assimilation with the local ensemble transform
Kalman filter. Q. J. R. Meteorol. Soc., 135, 251-262.
nsform  YangsS., Kalnay E. and Hunt B., 2012. Handling nonlinearity in

approach to ada p

n with the local e mbI
matrix factorization algor
135, 1560-1572.

ithms. Q. J. R. Meteorol. Physic D 230, 112- 126

Kalnay E. and Yang S., 2010. Accelerating the spin-up of ensemble
Kalman filtering. Q. J. R. Meteorol. Soc., 136B, 1644-1651.
Kalman R. and Bucy R., 1961. New results in linear filtering and

model. Mon. Wea. Rev., in press.
hnique for
l. Soc., 136, 701-707.
problems. Trans

. of the ASME, Jour. of Bas. Engin. D, 83,  YangS$S., Kalnay E., Hunt B. and Bowler N., 2009. Weight interpolation

Ensemble Kalman Filter: Experiments with the three-variable Lorenz

Ensemble Transform Kalman-Bucy Filters

In transform formulations of the EnKF, the update is performed by a post-

multiplication of the ensemble with a matrix of weights \\/ ¢ RM*M . For
perturbations, the Ensemble Transform Kalman-Bucy Filter (ETKBF) is:
dwW 1
b WWTY? RIYP\W .
ds  2(M -1) (6)

with pseudo -time () < g <1 ,the initial condition W(O)— | , and the analysis
W*? = W(1) such that X2 = X\\/2. For the full ensemble, the Direct
Ensemble Transform Kalman-Bucy filter (DETKBF) is:

A7 _ T
aw _ = W(I —U)WTYb R
ds  2(M -1

. _
Y W(l+U)-2y1"

(7)

integrated from W(O)— | to get W — W(1) such that )=(a — XbWa,
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Figure 2. Results from experiments with the 3-variable Lorenz 1963 model.
These experimentsuse H =1, M =3,R = 2I., and multiplicative covariance
inflation. Two observational frequencies are studied: every 8 integration steps
(frequent) and every 25 steps (infrequent), the integration step is 0.01. The
Local Ensemble Transform Kalman Filter (LETKF, Hunt et al., 2007) is used as
benchmark for comparison. Both ETKBFs achieve the performance of LETKF
with 5 pseudo-time steps (frequent obs) and 8 steps (infrequent obs).

In transform-based formulations, the operations are performed in the
ensemble space, which is usually much smaller than the state space M << N
Moreover, these formulations can benefit from gridpoint R-localization (Hunt
et al., 2007), as well as multiplicative adaptive covariance inflation (Miyoshi,
2011), which avoids manual tuning.
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Figure 3. Use of the ETBKFs in a medium complexity atmospheric global
circulation model (SPEEDY; Molteni, 2003). Results shown for a well observed
region (the Labrador Peninsula) and a poorly observed region (the Southern
Pacific). In both cases, the performance of the LETKF is achieved. Statistics
computed over a longer time period for all the atmospheric variables confirm
this.

Finally, the ETKBFs can benefit from post-processing techniques developed
for transform methods. They include accurate low-resolution analyses by
weight interpolation, a no-cost smoother, forecast sensitivity to observations
without adjoint model, and Running in Place/Quasi Outer-Loop (Yang et al.,
2009; Kalnay and Yang 2010 ; Yang et al., 2012).
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