

The impact of all-sky infrared satellite DA on moisture variables over the equatorial Indian Ocean

Man-Yau ("Joseph") Chan

Advisor: Fuqing Zhang

Motivation

Sparse and infrequent direct observations over tropical oceans

Radiosonde and dropsonde locations from Sep 16, 2016 to Sep 23, 2016 recorded in NOAA Products Validation System (NPROVS)

Motivation Dense and frequent remote observations from geostationary satellites are available

Meteorological Satellite 7

Infrared resolution:	5 km
Visible resolution:	2.5 km
Scan cycle period:	30 min

Covered Indian Ocean from Dec 2006 to Feb 2017

Meteosat-7 field-of-view

Motivation Ying and Zhang (2018)'s OSSE shows all-sky IR DA can improve frozen hydrometeors

Frozen hydrometeor mixing ratio RMSE

Research Question

What are the impacts of assimilating actual all-sky infrared observations over the tropical Indian Ocean?

Testbed: Oct 2011 MJO event Successfully reproduced in 9-km resolution WRF

Figure taken from Wang et al (2015).

Focus of this talk

- Assimilating all-sky Meteosat-7 WV channel observations improved horizontal cloud patterns.
- All-sky WV channel DA removed domainaveraged QVAPOR during update, creating a dry bias.

Setup of WRF ensemble WRF domain and settings

Indian Ocean Area

Indian Ocean domain

9 km horizontal resolution

44 vertical model levels

Model physics follow Ying and Zhang (2018)

Figure adapted from

https://legacy.lib.utexas.edu/maps/islands_oceans_poles/indianoceanarea.jpg

Setup of WRF ensemble 9 km grid spacing – gray zone resolution

Setup of WRF ensemble Initial & boundary conditions

Initial & boundary conditions from ECMWF's 50-member perturbed forecast ensemble

Missing data filled in using ERA-Interim
Some surface variables and data above 200 hPa

Initial conditions valid on Oct 15, 2011, at 00 UTC

Setup of experiments Overview

Focus of this talk

- Assimilating all-sky Meteosat-7 WV channel observations improved horizontal cloud patterns.
- All-sky WV channel DA removed domainaveraged QVAPOR during update, creating a dry bias.

Focus of this talk

- Assimilating all-sky Meteosat-7 WV channel observations improved horizontal cloud patterns.
- All-sky WV channel DA removed domainaveraged QVAPOR during update, creating a dry bias.

Ensemble validation

Meteosat-7 infrared window channel brightness temperatures (Window-BT, 11.5 micron)

Obs date: Oct 16, 00 UTC

Impact on cloud field

Improved ens mean power spectrum, reduced errors in both members and mean.

Focus of this talk

- Assimilating all-sky Meteosat-7 WV channel observations improved horizontal cloud patterns.
- All-sky WV channel DA removed domainaveraged QVAPOR during update, creating a dry bias.

Focus of this talk

- Assimilating all-sky Meteosat-7 WV channel observations improved horizontal cloud patterns.
- All-sky WV channel DA removed domainaveraged QVAPOR during update, creating a dry bias.

Ensemble validation DYNAMO Sounding Array

Figure from DYNAMO website by CSU Mesoscale Dynamic Group http://johnson.atmos.colostate.edu/dynamo /products/soundings/index.html

Impact on QVAPOR Overall reduction in QVAPOR. Created dry bias.

Impact on QVAPOR Update step is responsible for dry bias creation

Domain-averaged QVAPOR @ 800 hPa

Dissecting QVAPOR removal Much of removal comes from locations where # of cloudy members is between 1 and 20.

Possible origin of dry bias CRTM sees top of the mean cloud

$$\overline{x^{a}} = \overline{x^{f}} + \frac{Cov(x^{f}, y)}{\sigma_{f}^{2} + \sigma_{o}^{2}} \left\{ y - h\left(\overline{x^{f}}\right) \right\}$$

If 0 members have clouds,

If 10 members have tall clouds,

If 50 members have tall clouds,

 $h\left(\overline{x^{f}}\right) \sim 250 \text{ K}$ $h\left(\overline{x^{f}}\right) \sim 220 \text{ K}$ $h\left(\overline{x^{f}}\right) \sim 215 \text{ K}$

If covariance between QVAPOR and WV-BT is negative, and clear sky is observed (250 K), then removal of QVAPOR is very similar for both 10 member and 50 member case.

Future work

1. EnKF that sidesteps the need for ensemble average

2. Comparisons against radar observations and other observed sounding variables

3. Extend experiments beyond 3 days

Summary

Assimilation of WV-BT:

1. Improved horizontal cloud patterns above 500 km in both ens mean and ens average.

2. Created dry bias in update steps. Much of the bias comes from locations where only a few members have clouds. Likely tied to the nonlinear nature of radiative transfer.

Acknowledgements

Advisor: Dr. Fuqing Zhang

Department of Meteorology and Atmospheric Sciences

Center for Advanced Data Assimilation and Predictability Techniques (ADAPT)

National Science Foundation (Award #: 1712290)

Fin.

Summary

Assimilation of WV-BT:

1. Improved horizontal cloud patterns above 500 km in both ens mean and ens average.

2. Created dry bias in update steps. Much of the bias comes from locations where only a few members have clouds. Likely tied to the nonlinear nature of radiative transfer.