A DIAGNOSIS OF THE ROLE OF ANTICYCLONIC ROSSBY WAVE BREAKING IN INCREASING ZONAL AVAILABLE POTENTIAL ENERGY

Kevin Bowley^{1,2}, John R. Gyakum², and Eyad H. Atallah²

Penn State University Dept. of Meteorology and Atmospheric Science¹ McGill University Dept. of Atmospheric and Oceanic Scienes²

Department of Meteorology and Atmospheric Science

1. Diagnose changes to Rossby wave break frequency in response to zonal available potential energy (A_z) buildup periods

2. Examine the role of Anticyclonic Rossby wave breaking in modifying winter air mass properties for A_z buildups to anomalously high A_z

RWB & AZ

DJF AWB

- Zonal available potential energy (A_z) is the largest energy storage term of the Lorenz energy cycle
 - Metric to measure the relative strength of the hemispheric baroclinicity, which in turn acts as an approximation of the strength of the general circulation in the atmosphere

$$A_{Z} = \frac{c_{p}}{2} \iiint \gamma[T]^{\prime\prime 2} dm$$

Static stability:
$$\gamma \propto \frac{1}{static stability}$$

Pole-to-equator (meridional)
temperature gradient:
$$[T]^{\prime\prime} = [T] - [\widetilde{T}]$$

INTRODUCTION & METHODS

RWB & AZ

DJF AWB

CONCLUSIONS

 A_z is predominantly modulated by changes in A_z generation and baroclinic conversion of A_z to eddy kinetic energy (A_E).

A_z generation is achieved by diabatic processes (e.g. Winston and Krueger 1961, Romanski and Rossow, 2013)

3

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

DJF AWB

CONCLUSIONS

 A_z is predominantly modulated by changes in A_z generation and baroclinic conversion of A_z to eddy kinetic energy (A_E).

Bowley et al. (in press) found that for most seasons, robust increases in A_z on synoptic time scales were a function of both anomalously high G_z and anomalously low C_A

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

DJF AWB

CONCLUSIONS

- Bowley et al. (in press) identified robust buildups in the standardized anomaly of Northern Hemisphere (20°-85° N) A_z for all meteorological seasons
 - Found winter periods that underwent significant and sustained increases to anomalously high A_z were subject to robust changes to eastern North Pacific basin air mass properties.

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

- Bowley et al. (in press) identified robust buildups in the standardized anomaly of Northern Hemisphere (20°-85° N) A_z for all meteorological seasons
 - Found winter periods that underwent significant and sustained increases to anomalously high A_z were subject to robust changes to eastern North Pacific basin air mass properties.
 - Dynamic tropopause anticyclonic Rossby wave breaks were subjectively identified in the eastern North Pacific basin for a majority (17 of 18) of these A_z buildup periods.

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

 Bowley et al. (in press) identified robust buildups in the standardized anomaly of Northern Hemisphere (20°-85° N) A_z for all meteorological seasons

Here, we further examine the role of Rossby wave breaking and their associated dynamical feedbacks for increasing A_z on synoptic time scales

basin air mass properties.

Dynamic tropopause anticyclonic
Rossby wave breaks were subjectively identified in the eastern North Pacific basin for a majority (17 of 18) of these A_z buildup periods.

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

DJF AWB

CONCLUSIONS

ROSSBY WAVE BREAK IDENTIFICATION

- Identify instantaneous periods of overturning isentropes (Θ, dashed lines) on the dynamic tropopause (2.0 PVU)
- Wave breaking region is identified as the area which fully encompasses the full wave length of overturning isentrope (black box)
- Catalogues anticyclonic and cyclonic wave break events (black box)

RWB & AZ

DJF AWB

CONCLUSIONS

WINTER A_7 BUILDUP ANOMALOUS (BA) EVENTS

- AWB frequencies in the eastern North Pacific basin for winter BA periods are nearly double the climatological mean
- Anomalously high AWB in the eastern North Pacific coupled with anomalously-low CWB suggests a poleward displaced jet

BOWLEY ET AL. 5A.7

FRAMEWORK WINTER A_Z BA EVENTS & ANTICYCLONIC WAVE BREAKING

- To examine the contributions associated specifically to anticyclonic wave breaking, we track and composite 35 long duration AWB events (>24 hour) found in the eastern North Pacific basin (180°-100°W, 30°-50°N) for A_z buildups to anomalously high A_z
- Events are composited based upon the AWB life cycle to ascertain:
 - Sources of A_z generation
 - Mechanisms for ascent

$$\left(\nabla_{P}^{2} + \frac{f_{o}^{2}}{\sigma} \frac{\partial^{2}}{\partial P^{2}}\right)\omega = -\frac{f_{o}}{\sigma} \frac{\partial}{\partial P} \left(-\overline{\nu_{g}} \cdot \nabla_{P} \left(\zeta_{g} + f\right)\right) - \frac{1}{\sigma} \nabla_{P}^{2} \left(-\overline{\nu_{g}} \cdot \nabla_{P} \left(\frac{-\partial \Phi}{\partial P}\right)\right) - \frac{1}{\sigma} \nabla_{P}^{2} Q - \frac{f_{o}}{\sigma} \frac{\partial}{\partial P} \left(\hat{k} \cdot \nabla \times \vec{F}\right)$$

Rising Motion	~	Differential CVA w/height	Warm Air Advection	Diabatic heating
Sinking Motion		Differential AVA w/height	 Cold Air Advection	Diabatic cooling

CONCLUSIONS

Mass field evolution

BOWLEY ET AL. 5A.7

WINTER A_Z BA EVENTS & ANTICYCLONIC WAVE BREAKING

RWB & AZ

MASS FIELD EVOLUTION

BOWLEY ET AL. 5A.7

WINTER A_Z BA EVENTS & ANTICYCLONIC WAVE BREAKING

RWB & AZ

Mass field evolution +24 hours

BOWLEY ET AL. 5A.7

WINTER A_Z BA EVENTS & ANTICYCLONIC WAVE BREAKING

RWB & AZ

Air mass modification

WINTER A_Z BA EVENTS & ANTICYCLONIC WAVE BREAKING

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

DJF AWB

AIR MASS MODIFICATION

Winter A_z ba events & anticyclonic Wave breaking

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

DJF AWB

Step 1

Winter A_z ba events & anticyclonic Wave breaking

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

Mass field evolution +24 hours

BOWLEY ET AL. 5A.7

WINTER A_Z BA EVENTS & ANTICYCLONIC WAVE BREAKING

RWB & AZ

Step 1

Winter A_z ba events & anticyclonic wave breaking

CONCLUSIONS

- 1. Diagnose changes to Rossby wave break frequency in response to A_z buildup periods
 - Changes to the structure of the Northern Hemisphere circulation can be ascertained from anomalies in Rossby wave break frequencies during A_Z buildup periods
 - North Pacific basin above average AWB and below average CWB for winter buildup anomalous suggest a poleward shifted North Pacific jet

BOWLEY ET AL. 5A.7

RWB & AZ

DJF AWB

CONCLUSIONS

- 2. Examine the role of Anticyclonic Rossby wave breaking in modifying winter air mass properties for A_z buildups to anomalously high A_z
 - The poleward surging warm air mass associated with the AWB has several key roles:
 - Enhancing the eastern North Pacific troposphere-deep temperature gradient results in elongation of the North Pacific jet into western North America
 - 2. Mechanism for QG ascent on the northwestern/northern flank of the AWB
 - 3. Focuses a poleward surge of subtropical moisture into high latitude regions poleward of the AWB

BOWLEY ET AL. 5A.7

RWB & AZ

DJF AWB

THANK YOU FOR YOUR TIME!

- Barnes, E. A., and D. L. Hartmann, 2012: Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change. *J. Geophys. Res. Atmos.*, 117, 1–17.
- Bowley, K.A., E.H. Atallah, and J.R. Gyakum, in press: Synoptic-scale zonal available potential energy increases in the Northern Hemisphere. *J. Atmos. Sci.*, 10.1175/JAS-D-17-0292.1
- Bowley, K.A., E.H. Atallah, and J.R. Gyakum, submitted: A generalized perspective on Northern Hemisphere Rossby wave break climatologies. *Mon. Wea. Rev.*
- Bowley, K.A., J.R. Gyakum, and E.H. Atallah, submitted: The role of Rossby wave breaking for synoptic-scale buildups in Northern Hemisphere zonal available potential energy. *Mon. Wea. Rev.*
- Liu, C., X. Ren, and X. Yang, 2014: Mean Flow–Storm Track Relationship and Rossby Wave Breaking in Two Types of El-Niño. Adv. Atmos. Sci., 31, 197–210.
- Lorenz, E., 1955: Available potential energy and the maintenance of the general circulation. *Tellus*, **7**, 157–167.
- Martius, O., C. Schwierz, and H. Davies, 2007: Breaking waves at the tropopause in the wintertime Northern Hemisphere: Climatological analyses of the orientation and the theoretical LC1/2 classification. J. Atmos. Sci., 64, 2576–2592.
- Rivière, G., 2009: Effect of Latitudinal Variations in Low-Level Baroclinicity on Eddy Life Cycles and Upper-Tropospheric Wave-Breaking Processes. J. Atmos. Sci., 66, 1569–1592.
- Romanski, J. and W. B. Rossow, 2013: Contributions of individual atmospheric diabatic heating processes to the generation of available potential energy. *J. Climate*, **26**, 4244–4263.
- Winston, J. S. and A. F. Krueger, 1961: Some aspects of a cycle of available potential energy. *Mon. Wea. Rev.*, 89, 307–318.

kbowley@psu.edu

Department of Meteorology and Atmospheric Science

EXTRA SLIDES

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

DJF AWB

CONCLUSIONS

- Bowley et al. (2018) identified robust buildups in the standardized anomaly of Northern Hemisphere (20°-85° N) A_z for all meteorological seasons
 - Found winter periods that underwent significant and sustained increases in A_z were subject to robust changes to eastern North Pacific basin air mass properties.
 - Dynamic tropopause anticyclonic Rossby wave breaks were subjectively identified in the eastern North Pacific basin for a majority (17 of 18) of these A_z buildup periods.

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

DJF AWB

CONCLUSIONS

VORT. AND TEMP. WINTER A_Z BA EVENTS & ANTICYCLONIC ADVECTIONS WAVE BREAKING

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

DJF AWB

VORT. AND TEMP. WINTER A_Z BA EVENTS & ANTICYCLONIC ADVECTIONS WAVE BREAKING

Precip. Water and thickness

WINTER A_Z BA EVENTS & ANTICYCLONIC WAVE BREAKING

BOWLEY ET AL. 5A.7

INTRODUCTION & METHODS

RWB & AZ

DJF AWB

Precip. Water and thickness

Winter A_z ba events & anticyclonic Wave breaking

Dynamic Tropopause

Winter A_z ba events & anticyclonic Wave breaking

VORTICITY ADVECTION

Winter A_z ba events & anticyclonic wave breaking

Temperature advection

WINTER A_Z BA EVENTS & ANTICYCLONIC WAVE BREAKING

MOISTURE FLUX

Winter A_z ba events & anticyclonic wave breaking

LOWER TROPO. THICKNESS

WINTER A_Z BA EVENTS & ANTICYCLONIC WAVE BREAKING

Dynamic Tropopause

Winter A_z ba events & anticyclonic wave breaking

VORTICITY ADVECTION

Winter A_z ba events & anticyclonic wave breaking

Temperature advection

Winter A_z ba events & anticyclonic Wave breaking

LOWER TROPO. THICKNESS

WINTER A_Z BA EVENTS & ANTICYCLONIC WAVE BREAKING

