Modeling of Hurricane Stratiform Rainband Heating Structure in Axisymmetric Framework

Chris Yu and Anthony Didlake

Hurricane Rita 2005

Motivation

- The stratiform sector within the stationary rainband complex has a large spatial coverage
 - \rightarrow Influencing the vortex-scale wind field and storm evolution
- Didlake and Houze (2012)
 - ightarrow Enhances and broadens the storm tangential wind
 - \rightarrow Contributing to structural and intensity changes
- Moon and Nolan (2010) examined the dynamic response of the hurricane wind field to idealized heating patterns of a stratiform rainband

We are very interested to see how hurricane vortex responds to a more realistic heating structure in stratiform sector

Outline

- Observational Data
- Modeling tools
 - Prognostic Model
 - Diagnostic Model
- Reconstructing heating structure
- Implication on the angular momentum budget
- Concluding Remark

Observational Data

• Using airborne Doppler radar data, Didlake

and Houze (2012) found that mid-level inflows separated into three inflow bursts in Hurricane

Rita

• <u>What is the heating and cooling structure</u> responsible for the observed secondary

circulation pattern?

Modeling Tools

Prognostic Model		Diagnostic Model
<u>W</u> eather <u>R</u> esearch and <u>F</u> orecasting	Sa	wyer-Eliassen Equation
(WRF)	-	Based on
<u>A</u> dvanced <u>R</u> esearch <u>W</u> RF (ARW):		1. Linear Theory
Version 3.9.1		2. Axis-symmetric assumption,
 Regional, global or idealized 		3. Gradient wind and Thermal
 Microphysics and boundary layer 		wind balance.
parameterizations are turned OFF	-	Capture secondary circulation
 Artificial heat source is added 		due to axis-symmetric heating

 $\frac{\partial}{\partial r} \left(A \frac{\partial r \psi}{r \partial r} \right) + \frac{\partial}{\partial r} \left(B \frac{\partial \psi}{\partial z} \right)$

 $+\frac{\partial}{\partial z}\left(B\frac{\partial\psi}{\partial r}\right)+\frac{\partial}{\partial z}\left(C\frac{\partial r\psi}{r\partial r}\right)$

 $= \left(\frac{\partial Q}{\partial r} + \frac{\partial M}{\partial z}\right)$

A is static stability, B is baroclinicity, and C is inertial stability

Vortex Response to axis-symmetric heating

- WRF-ARW:
 - Two experiments are conducted:
 - 1. CTRL: No heat source
 - 2. CTRL+heat: heating added
- Calculate the difference in the vortex circulations (e.g. [CTRL+heat]-CTRL)

Reconstructing Heating Structure Heating structure can be reconstructed under axis-symmetric framework using Sawyer-Eliassen equation

$$\nabla_g^2 \psi = \left(\frac{\partial Q}{\partial r} - \frac{\partial M}{\partial z}\right)$$

• ∇_{g}^{2} is the generalized Laplace operator for Sawyer Eliassen model

Procedure:

- Extract non-divergent part of the observed circulation and compute streamfunction
- Use Sawyer Eliassen model to differential heating gradient $\frac{dQ}{dr}$
- Radially Integrate to obtain Q

From Didlake and Houze (2012)

Non Divergent Component

Full Component

Integrate to get Q

- Substiting stream function ψ into the Eliassen Model
- Further assumptions:
 - 1. Neglect the momentum forcing term
 - 2. Assuming Q = 0 at the outer

boundary

• Integrate $\frac{\partial Q}{\partial r}$ radial inward

Modifying the WRF heat source

• We modify the WRF heat source based on results from Eliassen Model.

Modifying the WRF heat source

• We modify the WRF heat source based on results from Eliassen Model.

WRF simulated secondary circulation using the artificial heat source:

$$\delta(u, w)$$

= $(u, w)_{CTRL+heat} - (u, w)_{CTRL}$

Height Z [km] 9 8 01

On expansion of tangential wind field

Streamfunction contour not parallel with absolute angular momentum surface

- →Non-zero momentum advection due to secondary circulation.
- →Absolute angular momentum is conserved

$$\frac{dM}{dt} = \frac{\partial M}{\partial t} + \boldsymbol{u} \cdot \nabla M = 0$$

 \rightarrow So if $\boldsymbol{u} \cdot \nabla M \neq 0$, we have $\frac{\partial M}{\partial t} \neq 0$

Concluding Remarks:

- Using Eliassen Model, realistic heating structure can be reconstructed using airborne doppler radar collected in hurricane Rita
- With the improved heating profiles, we can simulate the mid-level inflow and realistic secondary circulation as observed in the hurricane stratiform rainband
- Expansion of tangential wind field is also observed, consistent with Didlake and Houze (2012)

Comment & Questions