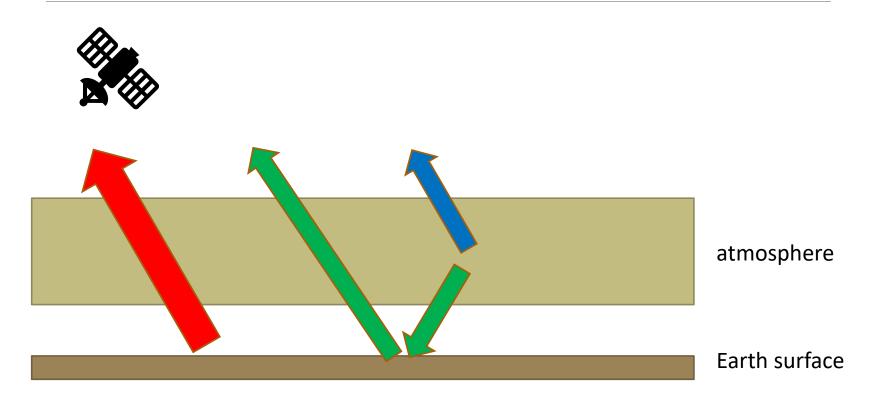

Automatic bias correction for satellite radiance through combining multiple channels

YINGHUI LU AUG. 17, 2017

Motivation

 Combination of microwave brightness temperatures from different channels can be used to retrieve snow water equivalent.



(Yuan Xue and Barton A. Forman, PSU-UMD DA workshop 2017)

Motivation

- Combination of microwave brightness temperatures from different channels can be used to retrieve snow water equivalent.
- Surface properties (emissivity and skin temperature) are big source of bias in window channels.
- Purpose:
- (1) Would it be possible to reduce the bias due to surface properties by combining multiple channels?
- (2) One step further, would it be possible to retrieve surface properties by combining multiple channels?

Simplest case: ocean, clear sky

$I(\nu) = \tau(\nu)\underline{\epsilon(\nu)}B(\nu,\underline{T_s}) + \tau(\nu)[1 - \underline{\epsilon(\nu)}]I_{atm}^{\downarrow}(\nu) + I_{atm}^{\uparrow}(\nu)$

In a tangent linear view

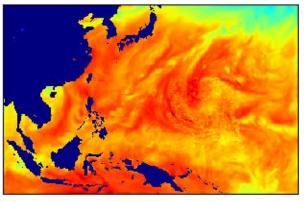
$$I(v) = \tau(v)\epsilon(v)B(v,T_s) + I_{atm}^{\uparrow}(v) + \tau(v)[1 - \epsilon(v)]I_{atm}^{\downarrow}(v)$$

$$\Delta I(v) = \tau \epsilon \frac{\partial B}{\partial T}|_{T_s}\Delta T_s + \tau[B - I_{atm}^{\downarrow}]\Delta \epsilon + \Delta I_{atm}$$

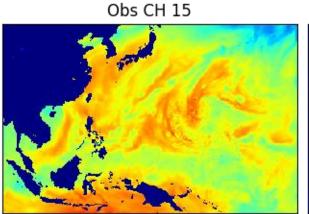
$$= M \Delta T_s + N \Delta \epsilon + \Delta I_{atm}$$

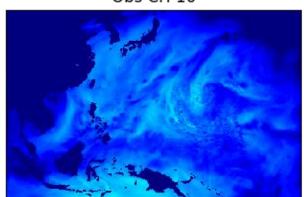
Assume: $\Delta \epsilon$ is the same for all three channels

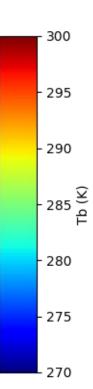
Define synthetic channel:
$$I_{syn} = a_1I_1 + a_2I_2 + a_3I_3$$
, where
$$\begin{cases} a_1M_1 + a_2M_2 + a_3M_3 = 0\\ a_1N_1 + a_2N_2 + a_3N_3 = 0\\ a_1 + a_2 + a_3 = 1 \end{cases}$$


Then $\Delta I_{syn} = M_1 \Delta I_{atm,1} + M_2 \Delta I_{atm,2} + M_3 \Delta I_{atm,3}$

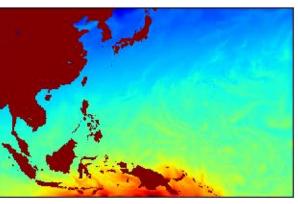
OSSE – IR, clear sky


Truth (or observation)


- Obtain a WRF run from Masashi
- Remove all the clouds
- Run CRTM forward model on AHI channels 14, 15, 16.

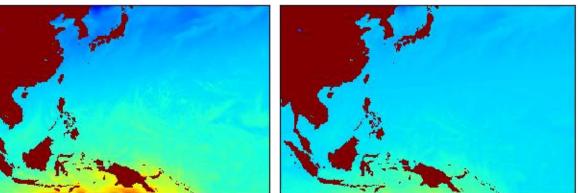


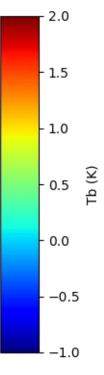
Obs CH 16



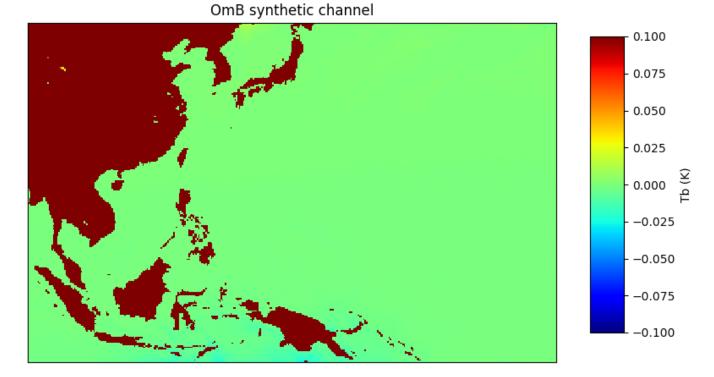
Perturb the surface ...

Add gradient perturbation • T_s: -2K to 2K south to north


• ϵ : 0 to -0.04 west to east


OmB CH 14

OmB CH 16


OmB CH 15

OmB synthetic observation

- Looks Good!
- Bias from surface removed

Future?

Would it be possible to calculate the "true" surface temperature?

- Signal to noise ratio is low $(\Delta I(\nu) = \tau \epsilon \frac{\partial B}{\partial T}|_{T_s} \Delta T_s + \tau [B I_{atm}^{\downarrow}] \Delta \epsilon + \Delta I_{atm})$
- Depends on ΔI_{atm}

Would it be possible to work on cloudy scene?

• Possible. Cloud top is the new "earth surface"!

How sensitive to atmospheric profile?

Add perturbation to atmosphere profile

Thank you! Questions and comments?