Correlation length scales in background/observation error covariances and how they influence filter performance

Yue (Michael) Ying Fuqing Zhang Jeffery Anderson

Groupmeeting, Aug 2017

Why is error covariance important?

Consider a single-variable system, e.g. Lorenz (1996) model.

length scale

Covariance propagates observed information in space/time

- covers unobserved variables
- enhance observed variables

Ensemble-estimated covariance is noisy, therefore requires localization.

What is the appropriate localization distance?

- Zhen and Zhang (2014) adaptive algorithm

- Anderson and Lei (2013) empirical localization functions

Covariance is flow-dependent!

(also variable-, scale-dependent?)

Correlation length scale (L) in background error

L=0, white noise, all variables must be observed. Luckily, atmosphere has L>0, like a red noise. Its spectrum determines L.

Variable dependence for L

Two-layer QG model, different power-law for each variable:

Cross-variable correlation functions

Time evolution of L

Free ensemble run: L increase over time as error saturates upscale.

With cycling data assimilation: L finds a quasi-steady value.

KE spectrum signal reference 10⁰ 0.5 obs error 0.4 10^{-2} 0.3 0.2 10^{-4} 0.1 0[,] 10^{-6} 20 40 60 80 100 10⁰ 10² 10¹ distance k (grid points)

mean absolute correlation (u, ψ)

Impact of background L on filter performance

Complication in the codependence among ensemble size N, correlation scale L, observation interval Δ

L in correlated observation error

EnKF (square root algorithm) assumes *uncorrelated* observation error: instrument errors are white noise.

According to information theory: more (uncorrelated) observations -> less uncertainty

However, observation errors can be correlated:

- preprocessing
- error of representation
- observation operator

Correlated error means additional observation does not increase information content as much.

Treating correlated error in ensemble filters

- Ignore it: suboptimal analysis + ensemble spread is reduced too much.
- inflate observation error variance
- account for correlation with a full-rank observation error covariance (in ETKF)

Consider real atmosphere data assimilation...

Unlike QG, there are several state variables with different spectral slope coupled with dynamic equations

For example, a wind observation will be used to update *p* and *w* as well as wind itself.

Errors in *p* and *w* will feedback into wind during forecast step.

Plans for further experiments

In QG, change state variable from ψ to u, v, then test assimilating ψ and ζ to update u, v.

Assimilate u, v observation to update state variable ψ and ζ , some how couple the two corresponding wind analysis (averaging) to form the final state.

Assimilate u, v to update u, v, but draw observation error with correlation length scale from 0 to 2L.