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Why is error covariance important?
Consider a single-variable system, e.g. Lorenz (1996) model.

Covariance propagates observed 
information in space/time
- covers unobserved variables
- enhance observed variables

Ensemble-estimated covariance 
is noisy, therefore requires 
localization.

What is the appropriate 
localization distance? 
- Zhen and Zhang (2014) adaptive 
algorithm
- Anderson and Lei (2013) empirical 
localization functions

Covariance is flow-dependent!

(also variable-, scale-dependent?)
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Correlation length scale (L) in background error
L=0, white noise, all variables must be observed.
Luckily, atmosphere has L>0, like a red noise. Its spectrum determines L.
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Variable dependence for L
Two-layer QG model, different power-law for each variable:
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Cross-variable correlation functions
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Time evolution of L
Free ensemble run: L increase over time as error saturates upscale.

With cycling data assimilation: L finds a quasi-steady value.
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Impact of background L on filter performance
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Best-performing 
localization ROI is 
matching L

Large scale favors 
larger ROI.



Complication in the codependence among
ensemble size N, correlation scale L, observation interval Δ
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L in correlated observation error 

EnKF (square root algorithm) assumes 
uncorrelated observation error:
instrument errors are white noise.

According to information theory:
more (uncorrelated) observations -> less 
uncertainty

However, observation errors can be 
correlated:
- preprocessing
- error of representation
- observation operator

Correlated error means additional 
observation does not increase 
information content as much.
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Treating correlated error in ensemble filters

- Ignore it: suboptimal analysis + ensemble spread is reduced too much.

- inflate observation error variance

- account for correlation with a full-rank observation error covariance (in ETKF)

obs error is white noise obs error is red noise

(dotted line: prior spread)
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Consider real atmosphere data assimilation…

Unlike QG, there are several state variables with different spectral 
slope coupled with dynamic equations

For example, a wind observation will be used to update p and w
as well as wind itself.

Errors in p and w will feedback into wind during forecast step.
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Plans for further experiments

In QG, change state variable from 𝜓 to u, v,
then test assimilating 𝜓 and 𝜁 to update u, v.

Assimilate u, v observation to update state variable 𝜓 and 𝜁, some 
how couple the two corresponding wind analysis (averaging) to form 
the final state.

Assimilate u, v to update u, v, but draw observation error with 
correlation length scale from 0 to 2L.


