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Why is error covariance important?

Consider a single-variable system, e.g. Lorenz (1996) model.
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Covariance propagates observed
information in space/time

- covers unobserved variables

- enhance observed variables

Ensemble-estimated covariance
is noisy, therefore requires
localization.

What is the appropriate
localization distance?

- Zhen and Zhang (2014) adaptive
algorithm

- Anderson and Lei (2013) empirical
localization functions

Covariance is flow-dependent!

(also variable-, scale-dependent?)



Correlation length scale (L) in background error

L=0, white noise, all variables must be observed.
Luckily, atmosphere has L>0, like a red noise. Its spectrum determines L.
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Variable dependence for L

Two-layer QG model, different power-law for each variable:
v




Cross-variable correlation functions
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Time evolution of L
Free ensemble run: L increase over time as error saturates upscale.

With cycling data assimilation: L finds a quasi-steady value.
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Impact of background L on filter performance
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Complication in the codependence among
ensemble size N, correlation scale L, observation interval A
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EnKF (square root algorithm) assumes

uncorrelated observation error:
instrument errors are white noise.

According to information theory:

more (uncorrelated) observations -> less

uncertainty

However, observation errors can be
correlated:

- preprocessing

- error of representation

- observation operator

Correlated error means additional
observation does not increase
information content as much.
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Treating correlated error in ensemble filters

- Ignore it: suboptimal analysis + ensemble spread is reduced too much.

- inflate observation error variance

- account for correlation with a full-rank observation error covariance (in ETKF)
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Consider real atmosphere data assimilation...
Unlike QG, there are several state variables with different spectral
slope coupled with dynamic equations

For example, a wind observation will be used to update p and w
as well as wind itself.

Errors in p and w will feedback into wind during forecast step.
Y (like p) u,v { (like w)

y

noisy observation smooth observation
updates smooth state updates noisy state




In QG, change state variable from y to u, v,
then test assimilating ¥ and ¢ to update u, v.

Assimilate u, v observation to update state variable ¥ and {, some
how couple the two corresponding wind analysis (averaging) to form
the final state.

Assimilate u, v to update u, v, but draw observation error with
correlation length scale from 0 to 2L.



