On the Best Choice of Kalman Gain

Yicun Zhen
Department of Mathematics

Question

- Linear filter : $X_{i}^{a}=X_{i}^{f}+K\left(y^{o}-h\left(X_{i}^{f}\right)\right)$
- What is the optimal matrix K, so that

$$
\sum_{i=1}^{N}\left(X_{i}^{a}-X^{\text {true }}\right)\left(X_{i}^{a}-X^{\text {true }}\right)^{\mathrm{T}}
$$

is the minimal SPD matrix

- No assumption on Gaussian distribution or linearity

Answer

- One choice of K is

$$
\tilde{K}=C\left(R+B_{h}\right)^{-1}
$$

Where

$$
\begin{aligned}
& C=\frac{1}{N}\left(X_{1}^{f}-X^{\text {true }}, \ldots, X_{N}^{f}-X^{\text {true }}\right)\left(Y_{1}^{f}-y^{\text {true }}, \ldots, Y_{N}^{f}-y^{\text {true }}\right)^{\mathrm{T}} \\
& B_{h}=\frac{1}{N}\left(Y_{1}^{f}-y^{\text {true }}, \ldots, Y_{N}^{f}-y^{\text {true }}\right)\left(Y_{1}^{f}-y^{\text {true }}, \ldots, Y_{N}^{f}-y^{\text {true }}\right)^{\mathrm{T}} \\
& Y_{i}^{f}=h\left(X_{i}^{f}\right) \quad y^{\text {true }}=h\left(X^{\text {true }}\right)
\end{aligned}
$$

Implication on the choice of innovation

$$
\bar{X}^{a}=\bar{X}^{f}+K v
$$

- There was (might be) a debate on using

$$
v=y^{o}-h\left(\bar{X}^{f}\right)
$$

or

$$
v=y^{o}-\bar{h}\left(X^{f}\right)
$$

- K~ is consistent with the second choice.

The difference with Kalman filter

- Define
perturbation : $\Delta X^{f}=\left(X_{1}^{f}-\bar{X}^{f}, \ldots, X_{N}^{f}-\bar{X}^{f}\right)$
bias :
$\delta X^{f}=\bar{X}^{f}-X^{\text {true }}$
- Then

B for Kalman filter : $\quad B_{K F}=\frac{1}{N-1} \Delta X^{f}\left(\Delta X^{f}\right)^{\mathrm{T}}$

B for the K~: $\quad \tilde{B}=\frac{N-1}{N} B_{K F}+\delta X^{f}\left(\delta X^{f}\right)^{\mathrm{T}}$

The similarity with other covariance adjusting methods

- Dick P. Dee (1995) pointed out that
$\mathrm{E}\left(v_{k} v_{k}^{\mathrm{T}}\right)$ should approximately equal to $H_{k} B_{k} H_{k}^{\mathrm{T}}+R$ where H is a linearized version of h.
- For $\mathrm{K} \sim$, by definition $\mathrm{E}\left(v_{k} v_{k}^{\mathrm{T}}\right)=B_{h}+R$
- Many adaptive covariance inflation methods are based on Dick P. Dee's criterion (or something similar).

The difference with other covariance adjusting methods

$$
\tilde{K}=\left(\frac{1}{N} \Delta X^{f} \Delta Y^{f}+\left(\delta X^{f} \delta Y^{f}\right)\left(R+\frac{1}{N} \Delta Y^{f} \Delta Y^{f}+\left(\delta Y^{f} \delta Y^{f}\right)^{-1}\right.\right.
$$

Additional terms

$$
K=\left(\frac{1}{N} \Delta X^{f} \Delta Y^{f}\right)\left(R+\frac{1}{N} \Delta Y^{f} \Delta Y^{f}\right)^{-1}
$$

Adjusting the denominator

$$
\begin{aligned}
& \tilde{K}=C\left(R+B_{h}\right)^{-1} \\
& \mathrm{E}\left(V V^{\mathrm{T}}\right)=R+\frac{1}{N} \Delta Y^{f}\left(\Delta Y^{f}\right)^{\mathrm{T}}+\delta Y^{f}\left(\delta Y^{f}\right)^{\mathrm{T}}
\end{aligned}
$$

where

$$
V=\left(y^{o}-Y_{1}^{f}, \ldots, y^{o}-Y_{N}^{f}\right)
$$

- Therefore it is natural to replace $\mathrm{B}_{\mathrm{h}}+\mathrm{R}$ with V^{\top}, or $\left(\mathrm{VV}^{\top}\right.$ $+\mathrm{R})^{*}(. .$.
- In AOEI, $\mathrm{E}\left(\left(y^{o}-\bar{h}\left(X^{f}\right)\right)^{2}-\sigma_{h(x b)}^{2}\right)=R+\left(\delta Y^{f}\right)^{2}-\left(\Delta Y^{f}\right)^{2} / N$

Numerical Results

Conclusions

- Under certain definition, K ~ is the best linear regression matrix.
- K~ can not be calculated directly since we do not know the Xtrue.
- It provides the theoretical background to many existing ideas/methods.

Implication

- It suggests that good estimation of the bias, δX^{f} and δY^{f}, can lead to a better Kalman gain matrix K.

Future work

- Try to make this idea practical.

$$
X_{i}^{a}=X_{i}^{f}+\tilde{K}\left(y^{o}-h\left(X_{i}^{f}\right)\right)
$$

$$
\tilde{K}=\left(\frac{1}{N} \Delta X^{f} \Delta Y^{f}+\delta X^{f} \delta Y^{f}\right)\left(R+\frac{1}{N} \Delta Y^{f} \Delta Y^{f}+\delta Y^{f} \delta Y^{f}\right)^{-1}
$$

