A first look at assimilating carbon dioxide concentration for flux estimation: Temporal and spatial variability and correlation structures

Hans Chen, Fuqing Zhang and Thomas Lauvaux Collaborator: Richard Alley

> Department of Meteorology The Pennsylvania State University

CO₂ plays a major role for climate

But our knowledge of where CO_2 comes from and where it is absorbed is severely lacking

"Uncertainties inferred from tracer-transport inversions are ... greater than 100 percent for anthropogenic CO₂ fluxes at national scales"

Challenging problem because of a lack of observations of CO₂ fluxes and small signal-to-noise ratio

A way forward using data assimilation?

 CO_2 concentration in the atmosphere can be used to constrain the CO_2 fluxes

We propose to use our PSU EnKF system assimilate CO_2 concentration and derive CO_2 fluxes

Essentially a parameter estimation of CO_2 fluxes, which vary in time and space

Objective

Examine the **temporal and spatial variability** of CO₂ concentration, and investigate the **ensemble sensitivity** due to uncertainties in atmospheric initial conditions

Simulate transport of CO₂

Run WRF-Chem 3.6.1 at a 27 km resolution to simulate CO_2 emissions and transport

The domain is over the contiguous United States

Focus on 2015 during summertime (July) when there is a large biological activity

Run 40 ensemble members with different atmospheric initial conditions

Input data Atmospheric initial conditions from ERA-Interim CO₂ emissions from CarbonTracker (Near-Real Time)

CO₂ has a large spatial variability

CO₂ concentration (ppm) at 100 m

Large spread among ensemble members Due to transport error

Paintball of $CO_2 < 280$ ppm for 5 members

Strong diurnal variability in CO₂

2015-07-10 23:00 UTC Time lag: 0 hours

2015-07-10 23:00 UTC Time lag: -3 hours

2015-07-10 23:00 UTC Time lag: -6 hours

2015-07-10 23:00 UTC Time lag: -9 hours

---- 10 m/s

2015-07-10 23:00 UTC Time lag: -12 hours

---- 10 m/s

Conclusions

CO₂ concentration has a large temporal and spatial variabliity on the regional scale

Transport errors result in large uncertainties in CO₂

Ensemble correlation structures show strong dependence on wind speed and direction

Significant lagged correlations show promise for deriving CO_2 fluxes from CO_2 concentration

Future work Create an ensemble of CO₂ fluxes

Optimize the fluxes by assimilating CO₂ concentration