

From Arctic sea ice to carbon in the United States: New adventures in the world of CO_2 data assimilation

Hans Chen

Department of Meteorology The Pennsylvania State University The story so far New challenges What lies ahead Summary

Recap: Arctic sea ice work

Santa's revenge: melting Arctic ice may be driving this winter's chill

Average Monthly Arctic Sea Ice Extent September 1979 - 2015 stent (m

Evidence is mounting that a warming Arctic has set the let stream loose

by John Timmer - Feb 17 2014, 7:00am EST

FARTH SCIENCE 197

Ultimate question

Can sea-ice loss in the Arctic have a significant impact on the weather and climate that we experience here in the mid-latitudes?

The story so far New challenges What lies ahead Summary

Are the impacts of sea-ice loss robust?

Colder winters in mid-latitudes?

Conclusions

- Arctic sea-ice loss can lead to an increased frequency of extreme cold winters in eastern Asia under specific conditions
- Decreased Arctic sea ice generally results in less frequent extreme cold winters in eastern North America
- Remote responses are generally nonlinear and non-robust

NASA awards \$30M grant to Penn State to help answer climate questions

UNIVERSITY PARK, Pa. -- Penn State will lead a five-year, \$30 million mission to improve quantification of present-day carbon-related greenhouse gas sources and sinks. An improved understanding of these gases will advance our ability to predict and manage future climate change. ACT-America will bring together more than 30 scientists from 10 institutions including federal agencies, national laboratories, other universities and private industry. NASA Langley Research Center, located in Hampton, Virginia, is Penn State's lead partner in the effort. Other Penn State researchers on the project include [Thomas Lauvaux, Jadjunct professor of meteorology and researcher at NASA 5] et Propulsion Laboratory, California: Natasha Miles, research associate in meteorology; Cota Richardson, senior research associate in meteorology; Charles Pavloski, senior research associate in meteorology; Charles Pavloski, senior research associate in meteorology; Bernd Haupt, senior research Reler, associate professor of meteorology; and Klaus Keller, associate professor of geosciences.

The story so far New challenges What lies ahead Summary

Understanding CO₂ fluxes is essential

Climate change

- Global carbon cycle
- Greenhouse gas balance
- Predicting climate change
- Regional impacts, e.g. ocean acidification

Policy making

- Limit greenhouse gas emissions
- Estimating and verifying emissions from countries

Understanding CO₂ fluxes is essential

Climate change

- Global carbon cycle
- Greenhouse gas balance
- Predicting climate change
- Regional impacts, e.g. ocean acidification

Policy making

- Limit greenhouse gas emissions
- Estimating and verifying emissions from countries

Deriving CO₂ fluxes is hard

Challenges

- No observations of CO₂ fluxes
- Anthropogenic signal tiny compared to natural variability

Promising future

"Uncertainties inferred from tracer-transport inversions are ... greater than 100 percent for anthropogenic CO₂ fluxes at national scales"

- Pressing need to quantify and verify CO₂ emissions and fluxes
- Increasing amount of CO₂ concentration observations

Current solutions deriving CO₂ fluxes

Terrestrial ecosystem model

- Model natural sources and sinks
- E.g. ocean, terrestrial biosphere, vegetation fires
- Note that the terrestrial sink is not modeled

Gridded inventories

- Anthropogenic emissions
- Based on e.g. national economic and trade data

Current solutions deriving CO₂ fluxes

Inversion systems

- Use CO₂ concentrations to constrain fluxes
- Lagrangian model to track CO₂ transport backward in time
- Combine with fluxes using a Bayesian approach

Current solutions deriving CO₂ fluxes

Inversion systems

- Use CO₂ concentrations to constrain fluxes
- Lagrangian model to track CO₂ transport backward in time
- Combine with fluxes using a Bayesian approach

Disadvantages

- Backward trajectory model different from forward model
- Computationally expensive for dense observations (e.g. from satellites)
- No uncertainties in the transport

The story so far New challenges What lies ahead Summary

Current solutions deriving CO₂ fluxes

Inversion systems

- Use CO₂ concentrations to constrain fluxes
- Lagrangian model to track CO₂ transport backward in time
- Combine with fluxes using a Bayesian approach

Can we provide a better solution?

EnKF approach

- Run WRF-Chem with different CO₂ fluxes
- Take difference between observed and modeled CO₂ concentrations
- Update CO₂ fluxes based on difference and atmospheric transport

Essentially a parameter estimation of $F_{CO_2}(x, y, t)$

Advantages

- Straightforward to include different observations, e.g. towers and satellite
- Combines different sources of information in a coherent framework
- Computationally efficient for dense data
- Can include uncertainties in both fluxes and atmospheric transport

Can we provide a better solution?

EnKF approach

- Run WRF-Chem with different CO₂ fluxes
- Take difference between observed and modeled CO₂ concentrations
- Update CO₂ fluxes based on difference and atmospheric transport

Essentially a parameter estimation of $F_{CO_2}(x, y, t)$

Advantages

- Straightforward to include different observations, e.g. towers and satellite
- Combines different sources of information in a coherent framework
- Computationally efficient for dense data
- Can include uncertainties in both fluxes and atmospheric transport

Overview of strategy (subject to change)

Assimilate CO_2 concentration in OSSEs where we know the true fluxes

Assimilate real observations of CO_2 concentration from towers and satellite

 \rightarrow

Does our system work in the ideal world?

How do the real CO₂ flux fields look like?

Include transport errors in the uncertainties of the optimized CO₂ fluxes

 \rightarrow

What are the uncertainties of the CO₂ fluxes?

OSSEs assimilating CO₂ concentrations

Goal

Prove that we can improve CO_2 flux fields by assimilating CO_2 concentrations in a set of Observing System Simulation Experiments

Details

- Over United States at the mesoscale (< 50 km)
- Examine impact of different observations (towers, satellite)

Procedure

- Assume prior fluxes represent the true fluxes
- Derive CO₂ concentration using WRF-Chem
- Run WRF-Chem with perturbed fluxes and assimilate CO₂ concentration with error
- Use EnKF to derive new CO₂ fluxes

OSSEs assimilating CO₂ concentrations

Goal

Prove that we can improve CO_2 flux fields by assimilating CO_2 concentrations in a set of Observing System Simulation Experiments

Details

- Over United States at the mesoscale (< 50 km)
- Examine impact of different observations (towers, satellite)

Procedure

- Assume prior fluxes represent the true fluxes
- Derive CO₂ concentration using WRF-Chem
- Run WRF-Chem with perturbed fluxes and assimilate CO₂ concentration with errors
- Use EnKF to derive new CO₂ fluxes

2.??

Goal Derive CO₂ fluxes from observations of CO₂ concentration

Goal Derive CO₂ fluxes from observations of CO₂ concentration Milestone 1 Prove that we can improve CO₂ fluxes by assimilating CO₂ concentration in a set of ideal experiments

Goal Derive CO₂ fluxes from observations of CO₂ concentration Milestone 1 Prove that we can Milestone 2 improve CO₂ fluxes by Derive real CO₂ fluxes assimilating CO₂ using our EnKF system concentration in a set and CO2 concentration of ideal experiments

from towers and satellite

Goal Derive CO₂ fluxes from observations of CO₂ concentration Milestone 1 Prove that we can Milestone 3 Milestone 2 improve CO₂ fluxes by Derive real CO₂ fluxes Include atmospheric assimilating CO₂ transport errors in the using our EnKF system concentration in a set

of ideal experiments

and CO2 concentration from towers and satellite

uncertainties of the optimized CO₂ fluxes