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Recap: Arctic sea ice work
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Santa’s revenge: melting Arctic ice may be vear
driving this winter’s chill

Evidence is mounting that a warming Arctic has set the jet stream loose.
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Ultimate question

Can sea-ice loss in the Arctic
have a significant impact on
the weather and climate that
we experience here in the
mid-latitudes?
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Are the impacts of sea-ice loss robust? @,

Conclusions

m Arctic sea-ice loss can
lead to an increased
frequency of extreme
cold winters in eastern
Asia under specific

conditions
Colder winters in mid-latitudes? m Decreased Arctic sea ice
. ehsia . eNA generally results in less
4] 4 frequent extreme cold

winters in eastern North
America
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NASA awards $30M grant to
Penn State to help answer
climate questions

UNIVERSITY PARK, Pa. -- Penn State will lead a five-year, $30
million mission to improve quantification of present-day
carbon-related greenhouse gas sources and sinks. An
improved understanding of these gases will advance our
ability to predict and manage future climate change.

ACT-America will bring together more than 30 scientists from
10 institutions including federal agencies, national
laboratories, other universities and private industry. NASA
Langley Research Center, located in Hampton, Virginia, is
Penn State's lead partner in the effort. Other Penn State
researchers on the project include Thomas Lauvaux, adjunct
professor of meteorology and researcher at NASA's Jet
Propulsion Laboratory, California; Natasha Miles, research
associate in meteorology; Scott Richardson, senior research
associate in meteorology; Charles Pavloski, senior research
associate in meteorology; Bernd Haupt, senior research
ssociate, Penn State's Earth and Environmental Systems
nstitute Fuging Zhang, orofessor of meteorology; and Klaus
Keller, associate protessor of geosciences.
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New challenges

Understanding CO, fluxes is essential

Climate change

m Global carbon cycle 400

m Greenhouse gas balance
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m Predicting climate change

m Regional impacts, e.g. ocean
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Understanding CO, fluxes is essential W
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Climate change

m Global carbon cycle
m Greenhouse gas balance ’
m Predicting climate change "
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m Regional impacts, e.g. ocean
acidification

Policy making

m Limit greenhouse gas emissions

m Estimating and verifying
emissions from countries
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Deriving CO, fluxes is hard

Challenges

m No observations of CO, fluxes

o ERIFYING GREENHOUSE.
GAS EMISSIONS =

m Anthropogenic signal tiny
compared to natural variability

Promising future
“Uncertainties inferred

from tracer-transport m Pressing need to quantify and
inversions are ... greater verify CO, emissions and fluxes
than 100 percent for
anthropogenic CO; fluxes
at national scales”

m Increasing amount of CO,
concentration observations
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Current solutions deriving CO, fluxes

Terrestrial ecosystem model

m Model natural sources
and sinks

m E.g. ocean, terrestrial
biosphere, vegetation fires

m Note that the terrestrial
sink is not modeled

Gridded inventories

m Anthropogenic emissions

m Based on e.g. national
economic and trade data



New challenges

Current solutions deriving CO, fluxes

Inversion systems

m Use CO, concentrations
to constrain fluxes

m Lagrangian model to
track CO, transport
backward in time

m Combine with fluxes using
a Bayesian approach




New challenges PtNNSTATI:
Current solutions deriving CO, fluxes

Inversion systems Disadvantages

m Use CO, concentrations m Backward trajectory
to constrain fluxes model different from

m Lagrangian model to forward model
track CO, transport m Computationally
backward in time expensive for dense

m Combine with fluxes using observations (e.g. from
a Bayesian approach satellites)

m No uncertainties in the
transport
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Current solutions deriving CO, fluxes

Inversion systems

m Use CO, concentrations
to constrain fluxes

m Lagrangian model to
track CO, transport
backward in time

m Combine with fluxes using
a Bayesian approach
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Can we provide a better solution? @,

EnKF approach

m Run WRF-Chem with
different CO5 fluxes

m Take difference between
observed and modeled
CO, concentrations

m Update CO, fluxes based
on difference and
atmospheric transport

Essentially a parameter
estimation of Fco,(x, y, t)
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Can we provide a better solution?

m Run WRF-Chem with m Straightforward to include
different CO, fluxes different observations,
m Take difference between e.g. towers and satellite
observed and modeled m Combines different
CO, concentrations sources of information in
m Update CO, fluxes based a coherent framework
on difference and m Computationally efficient
atmospheric transport for dense data

m Can include uncertainties
Essentially a parameter in both fluxes and
estimation of Fco,(x,y,t) atmospheric transport



What lies ahead

Overview of Strategy (subject to change)

Assimilate CO, concentration
in OSSEs where we know the —
true fluxes

Assimilate real observations
of CO, concentration from —>
towers and satellite

Include transport errors in
the uncertainties of the — >
optimized CO, fluxes

Does our system
work in the ideal
world?

How do the real
CO, flux fields
look like?

What are the
uncertainties of
the CO, fluxes?



What lies ahead

OSSEs assimilating CO, concentrations

Goal

Prove that we can improve
CO;, flux fields by assimilating
CO, concentrations in a set of
Observing System Simulation
Experiments

Details

m Over United States at the
mesoscale (< 50 km)

m Examine impact of
different observations
(towers, satellite)

PENNSTATE
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What lies ahead

OSSEs assimilating CO, concentrations

Goal Procedure

Prove that we can improve
CO;, flux fields by assimilating
CO, concentrations in a set of
Observing System Simulation
Experiments

m Assume prior fluxes
represent the true fluxes

m Derive CO, concentration
using WRF-Chem

m Run WRF-Chem with

perturbed fles and

assimilate CO,
m Over United States at the concentration with errors

mesoscale (< 50 km) m Use EnKF to derive new

m Examine impact of CO, fluxes
different observations
(towers, satellite)

PENNSTATE
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Goal

Derive CO? fluxes
"~ from observations of

CO2 concentration
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Goal

Derive CO? fluxes
.~ from observations of
CO2 concentration

Milestone 1

Prove that we can
improve CO» fluxes by
assimilating CO2
concentration in a set
of ideal experiments
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Goal

Derive CO? fluxes
.~ from observations of
CO2 concentration

Milestone 1

Prove that we can
improve CO» fluxes by
assimilating CO2
concentration in a set
of ideal experiments

Milestone 2

Derive real CO? fluxes
using our EnKF system
and CO2 concentration
from towers and satellite
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Roadmap

Milestone 1

Goal

Derive CO? fluxes
from observations of
CO2 concentration

Prove that we can
improve CO» fluxes by
assimilating CO2
concentration in a set
of ideal experiments

Milestone 2

Derive real CO? fluxes
using our EnKF system
and CO2 concentration
from towers and satellite

Milestone 3

Include atmospheric
transport errors in the
uncertainties of the
optimized CO2 fluxes
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