A SMÖRGÅSBORD OF MODELING FUN: KARL, SANDY, AND EDOUARD

Christopher Melhauser – Group Meeting – 08.17.2015

Research Questions...

- How does assimilating coplane observations impact the forecast track and intensity of Hurricane Karl (2010) during its strengthening period over the Bay of Campeche?
- Is there a benefit of modifying the coplane observation error based on distance from aircraft and elevation angle?

Coplane Geometry

- All α-planes:
 - Unambiguously define mean wind component along flight track
- α-lane parallel with wings:
 - Unambiguously define mean horizontal wind component perpendicular to flight track
- Exploit geometry to produce low error u- and v-wind estimates

Example Data Distribution Hurricane Karl (2010) – Flight Leg 1 1800-1900 UTC 16 September 2010 1937 observations

- The same number of observations are used for all observation types
- HRD and SO observations are the closest observations in 3D space to the coplane observations position

$Error = Error_{base} + Error_{\alpha} + Error_{\Psi}$ $Error_{\alpha} = |\sin \alpha| \cdot max Error_{\alpha}$, $max Error_{\alpha} = 1.5$ [m s⁻¹] $Error_{\Psi} = \frac{\iota}{-} \cdot maxError_{\Psi}$, $maxError_{\Psi} = 1.0$ [m s⁻¹] 30 $Error_{base} = 1.5 \text{ [m s}^{-1}\text{]}$ HIGH flight track ERROR 94 20 93.8 19.8 93.6 19.6 93.4 19.4 93.2 19.2 93 19 **OW** 92.8 longitude [deg] 18.8 latitude [deg] 92.6 18.6

Hurricane Karl (2010) – EnKF Assimilation Strategy Initialized: 00 UTC 16 September 2010

- 1. Perturbed GDAS w/ WRF-DA (cv3) \rightarrow ensemble IC
- Perturbed GFS Forecast w/ WRF-DA (cv3) → ensemble BC

Hurricane Karl (2010) – Forecast Track and Intensity 00 UTC 16 September 2010 \rightarrow 00 UTC 18 September 2010

EXPERIMENT KEY

NODA: no data assimilation (nature run)

HPI: position and intensity

AIRSO: position and intensity + airborne Vr winds with SO error*

AIRCP: position and intensity + airborne coplane u, v winds with SO error*

AIRCPU: position and intensity + airborne coplane u, v winds with error specification algorithm**

AIRHD: position and intensity + airborne HRD u, v winds with SO error*

*SO error 3 m s⁻¹ **error specification algorithm ranges 1.5 \rightarrow 4 m s⁻¹ Hurricane Karl (2010) – RMSE position and intensity 00 UTC 16 September 2010 → 00 UTC 18 September 2010

- NHC best track 6 hourly position and intensity for verification
- 00 through 18 UTC 17 September (4 times)

Discussion

- For a single flight test case during Hurricane Karl (2010), assimilating coplane analysis observations:
 - improves track forecasts compared to HRD analysis and SO radial velocities.
 - using a user specified error algorithm improves track forecasts compared with a static error.
- Assimilating u- and v-wind generally improves the TC environment and thus track, while radial velocity improves inner core processes, improving TC intensity (Li et al 2014).

Research Questions...

Given pseudo-operational configurations of three TC-tuned regional models:

- 1) How do the mean and spread of an ensemble with the same initial perturbations evolve using multiple models?
- Is single-core multi-physics ensemble sufficient for representing model uncertainties in TC prediction or do we need multi-core multi-physics ensembles?

Hurricane Edouard (2014) Ensemble Spread

- 5 day forecast initialized 2014-09-11 12 UTC
- Multi-core ensemble spread larger than any individual single-core
- Spread: APSU ~ COTC !~ HWRF

Hurricane Edouard (2014) Ensemble Mean – Physics

"APSU-Like" Physics

Modify microphysics, radiation, PBL, surface drag, cumulus

"HWRF-Like" Physics

- Distinct difference when modifying single-core physics schemes
- Shift single-core mean to mimic a completely different model-core and physics configuration
- Physics can dominate intensity and track evolution of TC

Hurricane Edouard (2014) Model & IC Error Growth

Root Mean Square Difference (RMSD) Measure of relative model error

Standard Deviation (STDEV)

Measure of IC error

 Pairwise error growth rate and magnitude within singlecore → can be highly dependent on physics

 Shift singlecore ensemble spread to mimic a different model-core and physics configuration

Hurricane Edouard (2014) Verification

Track

Track spread

(and mean)

statistically

indifferent

core/single-

model multi-

physics

ensemble.

between multi-

Discussion

- Ensemble track mean and spread reproduced by each model-core track and intensity solutions using identical initial perturbations
 - Generally, systematic biases in mean and ensemble spread evident between model-core and single-core multi-physics at longer lead times (~ > 48 h) for cases studied
- Modifying single-core physics → change mean and spread to resemble entirely different model-core
- Single-core multi-physics may be sufficient for TC track prediction

References

Chong, M., and J. Testud, 1996: Three-dimensional air circulation in a squall line from airborne dual-beam Doppler radar data: A test of coplane methodology software. J. Atmos. Ocean. Technol., 13, 36–53.

Li, X., J. Ming, Y. Wang, K. Zhao, and M. Xue, 2013: Assimilation of T-TREC-retrieved wind data with WRF 3DVAR for the shortterm forecasting of typhoon Meranti (2010) near landfall. J. Geophys. Res. Atmos., 118, 10361–10375.

Weng, Y., and F. Zhang, 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Weather Rev., 140, 841–859.

SUPPLEMENTARY SLIDES

Hurricane Karl (2010) – Flight Leg 2 16 September 2010 1900-2000 UTC → Assimilated at 20 UTC

Observations: 1758 U,V or Vr (thinned to ~4.5km spacing)

Hurricane Karl (2010) – Flight Leg 3

16 September 2010 2000-2100 UTC \rightarrow Assimilated at 21 UTC Observations: 550 U,V or Vr (thinned to ~4.5km spacing)

Hurricane Karl (2010) – Model Setup 00 UTC 16 September 2010 → 00 UTC 18 September 2010

WRF	WRF-ARW v3.6
Domains	D01 (27 km; 225x150) D02 (9 km; 400x226) D03 (3 km; 478x358) Vertical (43 levels; ptop 10 hPa)
Physics	WSM6 MP RRTMG LW/SW YSU PBL Tiedtke CU (D01 ONLY) Donelan Cd + Garratt Ck (isftcflx)

Hurricane Karl (2010) – Simulated Outgoing Longwave Radiation

EXPERIMENT KEY

NODA: no data assimilation (nature run) HPI: position and intensity AIRSO : position and intensity + airborne Vr winds AIRCP: position and intensity + airborne coplane u, v winds AIRHD: position and intensity + airborne HRD u, v winds

Hurricane Sandy (2012) Track

 5 day forecast initialized 2012-10-26 00 UTC

Track - Ensemble

- Ensemble track mean and spread reproduced by each model-core
 - Systematic bias at longer lead times (~> 60 h)

Track - Ensemble Mean & Control Run

Table 1

Model	DOMAIN	CP	MP	PBL	RAD	SFC
APSU (2014) (WRF-ARW)	D01: 27km (379x244) D02: 9km (304x304) D03: 3km (304x304) Vertical Levels: 43 Model Top: 10 hPa	D01 ONLY Grell-Freitas (Grell et al. 2013)	WSM-6 (Hong and Lim 1996)	YSU (Hong et al. 2006)	Dudhia shortwave (Dudhia 1989) RRTM longwave (Mlawer et al. 1997)	- Modified MM5 similarity (WRF option 91) - PSU formulation surface TC flux (Green and Zhang, 2013) - 5-layer thermal diffusion land surface
HWRF (2013) (modified WRF-NMM)	D01: 0.18 deg (216x432) D02: 0.06 deg (88x170) D03: 0.02 deg (180x324) Vertical Levels: 43 Model Top: 50 hPa	D01 & D02 New SAS (HWRF) (Han and Pan 2011)	Tropical Ferrier (Ferrier 2005)	Modified GFS (Hong and Pan(1996); e.g. Gopalakrishnan et al. (2013); Zhang et al. (2013))	GFDL shortwave and longwave (Fels and Schwarzkopf 1981)	- HWRF surface physics - GFDL hurricane slab model land surface (Bob Tuleya 2011)
COTC (2015) (COAMPS-TC)	D01: 27km (379x244) D02: 9km (304x304) D03: 3km (304x304) Vertical Levels: 40 Model Top: ~ 12 hPa	D01 ONLY Kain-Fritsch scheme (Kain and Fritsch, 1983)	COAMPS v2 single-bulk (Rutledge and Hobbs, 1983) w/ drizzle	Mellor-Yamada 2.5 scheme (Mellor and Yamada 1982) w/ prognostic TKE	NOGAPS SW/LW (Harshvardhan et al., 1987)	COAMPS surface physics (Louis, 1979)

Model	Time Discretization	Spatial Discretization	Prognostic Variables	Advection	Diffusion
APSU (2014) (WRF-ARW) (see Skamarock et al. 2008 and references therein)	Runge-Kutta 3rd order predictor-corrector scheme (Wicker and Skamarock (2002)) with short time step time- splitting for high frequency acoustic modes	Horizontal: Arakawa C- grid Vertical: mass + U,V and vertical velocity staggering	U, V, W, perturbation potential temperature, perturbation geopotential, perturbation surface pressure of dry air, TKE, Q_v , Q_r , Q_s , Q_g , Q_i , Q_c	6th order accurate for momentum, scalars and geopotential	6 th order accurate
HWRF (2013) (modified WRF-NMM) (see Janjic et al. (2010), Tallapragada et al. (2013, and references therein)	Forward-backward scheme with an implicit scheme for high frequency vertically propagating modes	Horizontal: Arakawa E- grid Vertical: Lorenz staggering (mass + U,V on consistent levels)	U, V, T, non-hydrostatic pressure, hydrostatic surface pressure, Q_v , Q_r , Q_i , Q_{ci} , Q_c	Horizontal: modified Adams-Bashforth, for horizontal advection of u,v, and T, and Coriolis terms, Vertical: Crank Nicholson for vertical advection of u,v, and T, Scalars: upstream Lagrangian forward time differencing	2nd order accurate
COTC (2015) (COAMPS-TC) (see Hack (1996), Chen et al. (2003), and references therein)	Centered-in-time (i.e. leap frog) 2 nd order scheme with short time step time-splitting for high frequency acoustic modes	Horizontal: Arakawa C- grid Vertical: mass + U,V and vertical velocity staggering	U, V, W, θ, π, TKE, Q _v , Q _r , Q _i , Q _g , Q _s , Q _c	2 nd order accurate upstream, forward- in-time advection	4 th order accurate