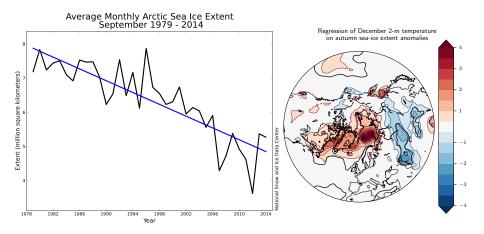

Interannual Arctic sea-ice variability and associated winter weather patterns: A regional perspective for 1979–2014

Hans Chen

Department of Meteorology The Pennsylvania State University

Arctic sea ice is rapidly decreasing

PENN<u>State</u>



Arctic sea ice is rapidly decreasing

PENN<u>State</u>

"Warm Arctic cold continents"

PENNSTATE

Using observational data,

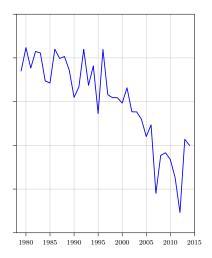
- Objectively classify Arctic sea ice into regions of similar sea ice concentration variability
- Detrend Arctic sea-ice extent using a nonlinear and adaptive method
- Investigate the winter atmospheric patterns associated with the sea-ice extent variability in each region

Sea ice and atmospheric data

Sea ice concentration:

 Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data

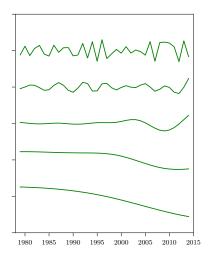
PENNSTATE


- Daily data from 1979 to 2014
- \blacksquare Horizontal resolution of 25 \times 25 km

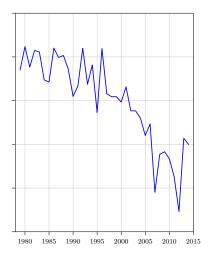
Atmospheric data:

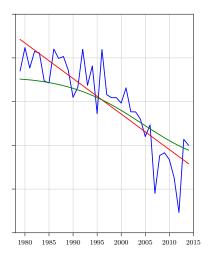
- NCEP-DOE Reanalysis 2
- Monthly mean data from 1979 to 2014
- 2-m temperature on a T62 Gaussian grid (192×94)
- Sea-level pressure on a 2.5×2.5 lat-lon grid (144 \times 73)

Example: Detrending total Arctic sea-ice extent.

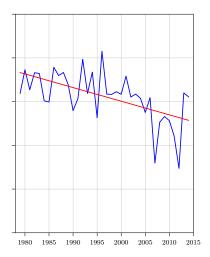

Ensemble Empirical Mode Decomposition is an adaptive method to decompose a signal into intrinsic mode functions (IMFs).

EEMD makes no a priori assumptions about the shape of the data.

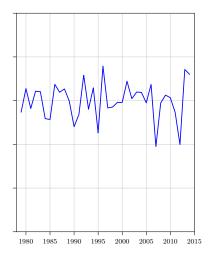

The method works well with nonlinear and non-stationary data.

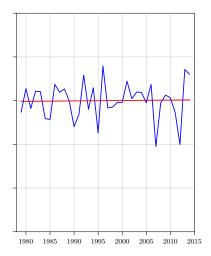

- Is there a significant linear trend? (p < 0.05)</p>
- **2** If yes \rightarrow subtract lowest frequency IMF
- Do the anomalies have a significant linear trend?
- 4 If yes \rightarrow subtract next lowest frequency IMF
- Repeat until there is no significant linear trend

- 1 Is there a significant linear trend? (p < 0.05)
- 2 If yes \rightarrow subtract lowest frequency IMF
- Do the anomalies have a significant linear trend?
- 4 If yes \rightarrow subtract next lowest frequency IMF
- Repeat until there is no significant linear trend


- Is there a significant linear trend? (p < 0.05)
- 2 If yes \rightarrow subtract lowest frequency IMF
- 3 Do the anomalies have a significant linear trend?
- 4 If yes \rightarrow subtract next lowest frequency IMF
- Repeat until there is no significant linear trend

- Is there a significant linear trend? (p < 0.05)
- 2 If yes \rightarrow subtract lowest frequency IMF
- 3 Do the anomalies have a significant linear trend?
- 4 If yes \rightarrow subtract next lowest frequency IMF
- Repeat until there is no significant linear trend


- Is there a significant linear trend? (p < 0.05)
- 2 If yes \rightarrow subtract lowest frequency IMF
- 3 Do the anomalies have a significant linear trend?
- 4 If yes \rightarrow subtract next lowest frequency IMF
- Repeat until there is no significant linear trend

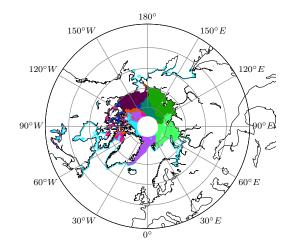

- Is there a significant linear trend? (p < 0.05)
- 2 If yes \rightarrow subtract lowest frequency IMF
- 3 Do the anomalies have a significant linear trend?
- 4 If yes \rightarrow subtract next lowest frequency IMF
- 5 Repeat until there is no significant linear trend

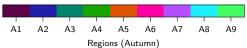
- Is there a significant linear trend? (p < 0.05)
- 2 If yes \rightarrow subtract lowest frequency IMF
- 3 Do the anomalies have a significant linear trend?
- 4 If yes \rightarrow subtract next lowest frequency IMF
- 5 Repeat until there is no significant linear trend

- Is there a significant linear trend? (p < 0.05)
- 2 If yes \rightarrow subtract lowest frequency IMF
- 3 Do the anomalies have a significant linear trend?
- 4 If yes \rightarrow subtract next lowest frequency IMF
- Repeat until there is no significant linear trend

PENNSTATE

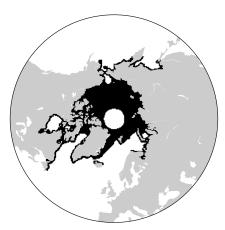
Classification with self-organizing maps

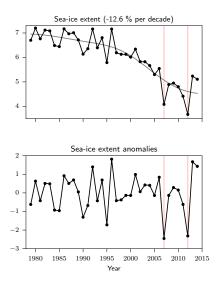

Daily sea ice concentration were averaged into seasonal means. Here we will focus on September-October (autumn).

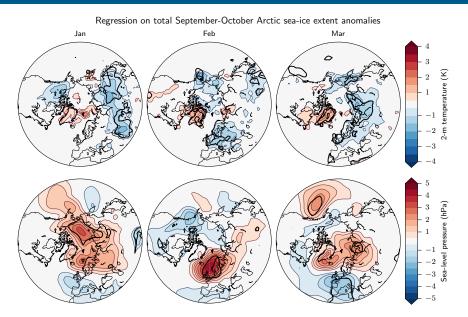

The time series of sea ice concentrations in each grid point were classified using a self-organizing map.

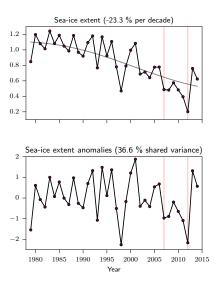
Our map has 4×3 nodes. Regions that share more than half their variance were merged into one region.

Classification of sea ice regions



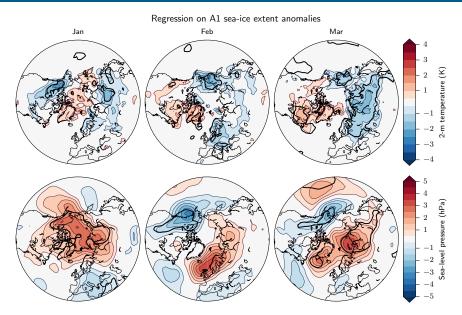


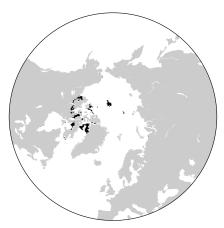

Total sea-ice extent variability

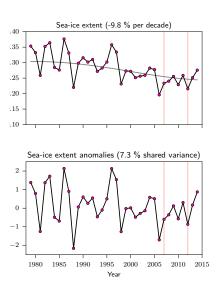

Weather patterns associated with total

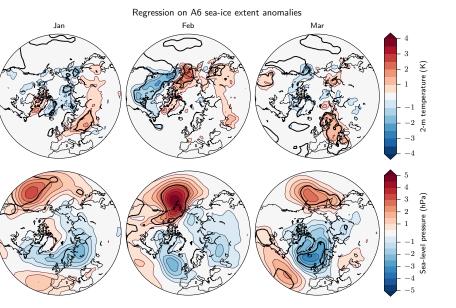
PENNSTATE

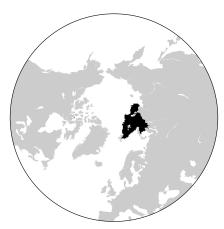
A1 region and sea-ice extent variability

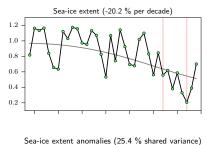


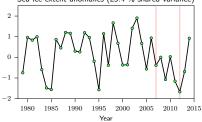

PENN<u>State</u>


Weather patterns associated with A1

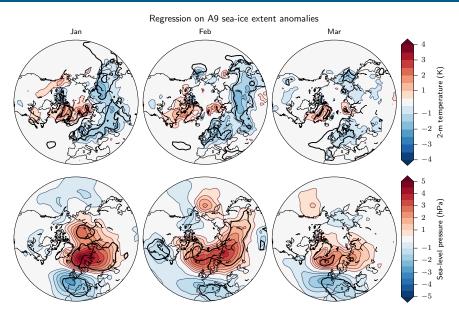

A6 region and sea-ice extent variability


PENN<u>State</u>


Weather patterns associated with A6


PENNSTATE

A9 region and sea-ice extent variability



PENN<u>State</u>

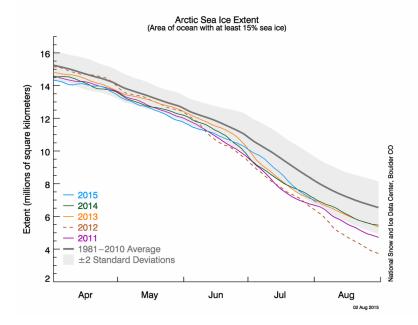
Weather patterns associated with A9

Conclusions

- Arctic sea-ice extent shows clear patterns of regional variations and trends
- The trends in sea-ice extent are largely nonlinear and are well described by EEMD analysis
- Sea-ice extent variability in different regions are associated with distinct atmospheric patterns in winter

Take home message

Just like global warming, the total Arctic sea-ice extent tells an important story, but the regional variations are also important to consider.



Extra material

Correlation between regions

	Tot	A1	A2	A3	A4	A5	A6	A7	A8
A1	0.60								
A2	0.51	0.51							
A3	0.59	0.28	0.41						
A4	0.66	0.27	0.26	0.50					
A5	0.38	0.46	0.15	-0.00	0.09				
A6	0.27	0.12	0.52	0.13	0.17	0.37			
A7	-0.08	-0.02	-0.37	-0.32	-0.39	0.35	-0.13		
A8	0.02	-0.14	-0.19	0.01	-0.07	0.40	0.45	0.03	
A9	0.50	0.03	0.22	0.11	0.08	-0.09	-0.03	0.06	-0.17

