Sensitivity of Simulated Tropical Cyclones to Air-Sea Flux Parameterizations and Implications for Parameter Estimation

> Benjamin W. Green and Fuqing Zhang Penn State University

*Special thanks to Ken Carey, Sharan Majumdar, and Bob Atlas for AMS Student Travel Award

Background

• Emanuel's potential intensity theory for TCs

$$V_{\max}^{2} = \frac{C_{k}}{C_{D}} \left(\frac{1 - 0.25r_{0}^{2}}{1 - \frac{\gamma}{2}\frac{C_{k}}{C_{D}}} \right) \qquad P_{\min} \approx -\frac{V_{\max}^{2}\left(1 - 0.5AH\right) - 0.25r_{0}^{2}}{1 - AH}$$

- Increase C_k and/or decrease C_D = stronger TC (faster winds <u>and</u> deeper central pressure)
- Problem: uncertainty/error in C_k and C_D parameterizations = error in TC forecasts

Emanuel (1986; 1995a,b)

Impact of C_D and C_k on WRF simulations

 Tests of available surface flux options in WRF motivates more systematic investigation

Parameterizing C_k and C_D over the ocean

- Reality: Sea state (need wave model coupling)
- Atmosphere only models: low-level wind speed and curve-fitting empirical parameters

 C_{D} as a function of wind speed (1) • Sraj et al. (2013), from Kara et al. (2002): $C_{D,N} = 10^{-6} \left[692 + 71\tilde{V} - 0.7\tilde{V}^2 \right] \quad \tilde{V} = \max \left[2.5, \min \left(V_{10}, V_c \right) \right]$ 2.4 2.2 1.8 0 0 1.4 0 1.4 $V_{10} = V_c$ 1.4 Low-wind **High-wind** 1.2 regime: regime: $V_{10} < V_{c}$ $V_{10} > V_c$ 0.8 10 20 30 40 60 70 50 0 5 10-m wind speed (m s⁻¹)

C_D as a function of wind speed (2)

Adjust C_D curve (prev. slide) with 3 parameters

$$C'_{D,N} = \begin{cases} \underline{\alpha}C_{D,N} &, V_{10} < V_c \\ \underline{\alpha}C_{D,N} + \underline{\alpha}m(V_{10} - \underline{V_c}) &, V_{10} \ge V_c \end{cases}$$

- V_c is where high-wind regime starts
 V_c has minimal impact on C_D (not shown)
- *m* only matters when $V_{10} > V_c$ (not shown)
- α is very important for all V_{10} : see next slide

Zedler et al. (2012); Sraj et al. (2013); Green and Zhang (2014)

Effect of α on C_D and C_k curves

- α is a multiplicative factor for C_D
- **Similarity theory**: Increased C_D = increased C_k

 $-\alpha$ has large impact on C_D and C_k for all V₁₀

Test C_k independent of C_D

- Change C_k without changing C_D
- Introduce β , which is somewhat like a multiplicative parameter for C_k (cf. α for C_D)
- β has a larger impact than α on C_k

Experimental setup

- Run WRF simulations of Hurricane Katrina
 - Spinup: EnKF assimilation of airborne Doppler velocities
 - Deterministic runs started at 00Z on 26 and 27 August (80 runs each time)
- Incorporate new parameters (α and β) into "MM5" surface layer scheme: see next slide
- WRF V3.4 model details:
 - 3 km horizontal grid spacing
 - YSU PBL scheme

How do α and β affect simulated TCs?

- Multi parameter experiments: Vary all parameters simultaneously (look for signals in the noise)
- Generate 80 unique, randomly chosen sets of parameter values
- Each parameter can have 1 of 20 (evenly spaced) values in given ranges:

Parameter	Min value	Max value
α	0.4	1.1
β	0.45	2.0

Correlations with max V_{10} and min SLP (1)

- α (C_D multiplier, blue) changes pressure-wind relationship (PWR)
 - Larger α (more drag at all speeds) decreases maximum V_{10} (weaker storm) for much of TC's life
 - Larger α deepens minimum SLP (**stronger** storm)

Correlations with max V_{10} and min SLP (2)

- β (C_k multiplier, green) has a **minimal** impact on PWR (unlike α)
 - Larger β (higher C_k) increases max V₁₀ (stronger storm)
 - Larger β deepens minimum SLP (stronger storm)

Time evolution of azimuthally-averaged V_{10} and SLP

- α (C_D multiplier) impacts more than just "point metrics"
- Radial correlation dipoles imply structural changes
 - Increasing α (C_D) = inward shift of RMW
 - Increasing α = steeper radial pressure gradient

-1 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1

Radius-height correlations with α

- Azimuthal averages 48 hours after 00Z/27 Aug initialization
 - Increasing α (C_D) = weaker tangential wind in PBL
 - Increasing α = tighter primary vortex (correlation dipole)
 - Increasing α = stronger secondary circulation (PBL inflow and upper-level outflow)
 -1 -.8 -.6 -.4 -.2 0 .2 .4 .6 .8 1

Simultaneous State and Parameter Estimation (SSPE)

- DA traditionally only for state variables (U,V,T,P,Q,...)
- In EnKF, treat model parameter (here, α) like a state variable and use state augmentation:

$$\mathbf{x}_{*}^{a} = \mathbf{x}_{*}^{f} + \mathbf{K} \left(\mathbf{y}^{o} - \mathbf{H}_{*} \mathbf{x}_{*}^{f} \right)$$

$$\mathbf{K} = \mathbf{P}^{f} \mathbf{H}_{*}^{T} \left(\mathbf{H}_{*} \mathbf{P}^{f} \mathbf{H}_{*}^{T} + \mathbf{R} \right)^{-1}$$

$$\mathbf{x}_{*}^{f} = \begin{bmatrix} \mathbf{x}^{f} \\ \alpha^{f} \end{bmatrix} \xleftarrow{} \text{Model parameters}$$

$$\mathbf{H}_{*} = \begin{bmatrix} \mathbf{H}_{x} & \mathbf{0} \\ \uparrow \end{bmatrix}$$

$$\mathbf{H}_{*} = \begin{bmatrix} \mathbf{H}_{x} & \mathbf{0} \\ \uparrow \end{bmatrix}$$

$$\mathbf{M}_{xx} = \begin{bmatrix} \mathbf{H}_{x} & \mathbf{0} \\ \uparrow \end{bmatrix}$$

$$\mathbf{M}_{xy} = \begin{bmatrix} \mathbf{H}_{x} & \mathbf{0} \\ \uparrow \end{bmatrix}$$

$$\mathbf{M}_{xy} = \begin{bmatrix} \mathbf{H}_{x} & \mathbf{0} \\ \uparrow \end{bmatrix}$$

 Ultimate goal: Use SSPE to estimate α and improve model forecasts

See, e.g., Yang and DelSole (2009)

Preliminary SSPE results

- OSSE for Katrina at $\Delta x = 9$ km using WRF
 - Truth: Deterministic forecast initialized at 00Z/25 Aug. (α = 1.0)
 - SSPE: 40-member ensemble, assimilate min SLP from truth every 3 h starting at 00Z/26 Aug.
- All increments of ensemble mean α are towards truth
 - More obs and/or stronger TC could yield larger increments

Concluding remarks

- C_D changes TC structure & pressure-wind relationship
 - More drag = tighter vortex, stronger secondary circulation
 - More drag = weaker winds and <u>deeper</u> pressure
- C_k has simple impact (higher C_k = stronger TC)
- SSPE: OSSE shows great promise for estimating α
- Ongoing SSPE work:
 - Run OSSE when members have stronger TCs
 - Go down to $\Delta x = 3 \text{ km}$
 - Assimilate real data (including airborne Doppler velocities)
- Future work: Expand SSPE to coupled (air-sea-wave) models

References

Bao, J.-W., S. A. Michelson, and J. M. Wilczak, 2002: Sensitivity of numerical simulations to parameterizations of roughness for surface heat fluxes at high winds over the sea. *Mon. Wea. Rev.*, **130**, 1926-1932.

Bao, J.-W., S. G. Gopalakrishnan, S. A. Michelson, F. D. Marks, and M. T. Montgomery, 2012: Impact of physics representations in the HWRFX model on simulated hurricane structure and wind-pressure relationships. *Mon. Wea. Rev.*, **140**, 3278-3299.

Bell, M. M., M. T. Montgomery, and K. A. Emanuel, 2012: Air-sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST. J. Atmos. Sci., 69, 3197-3222.

Charnock, H., 1955: Wind stress on a water surface. Quart. J. Roy. Meteor. Soc., 81, 639-640.

Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. *Geophys. Res. Lett.*, **31**, L18306, doi:10.1029/2004GL019640.

Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

Emanuel, K. A., 1986: An air-sea interaction theory for tropical cyclones. Part I. J. Atmos. Sci., 43, 585-604.

Emanuel, K. A., 1995a: The behavior of a simple hurricane model using a convective scheme based on subcloud-layer entropy equilibrium. J. Atmos. Sci., 52, 3960-3968.

Emanuel, K. A., 1995b: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. *J. Atmos. Sci.*, **52**, 3969-3976.

Green, B. W., and F. Zhang, 2013: Impacts of air-sea flux parameterizations on the intensity and structure of tropical cyclones. *Mon. Wea. Rev.*, **141**, 2308-2324.

Green, B. W., and F. Zhang, 2014: Sensitivity of tropical cyclone simulations to parametric uncertainties in air-sea fluxes and implications for parameter estimation. *Mon. Wea. Rev.*, **142**, 2290-2308.

Holthuijsen, L. H., M. D. Powell, and J. D. Pietrzak, 2012: Wind and waves in extreme hurricanes. J. Geophys. Res., 117, C09003, doi:10.1029/2012JC007983.

Jarosz, E., D. A. Mitchell, D. W. Wang, and W. J. Teague, 2007: Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. *Science*, **315**, 1707-1709.

Kara, A. B., P. A. Rochford, and H. E. Hurlburt, 2002: Air-sea flux estimates and the 1997-1998 ENSO event. Bound.-Lay. Meteor., 103, 439-458.

Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. *Nature*, 24, 395-419.

Smith, R. K., M. T. Montgomery, and G. L. Thomsen, 2012: Sensitivity of tropical-cyclone models to the surface drag coefficient in different boundary-layer schemes. *Quart. J. Roy. Meteor. Soc.*, doi: 10.1002/qj.2057.

Sraj, I., M. Iskandarani, A. Srinivasan, C. Thacker, J. Winokur, A. Alexanderian, C. Lee, S. Chen, and O. Knio, 2013: Bayesian inference of drag parameters using Fanapi AXBT data. *Mon. Wea. Rev.*, **141**, 2347-2367.

Vickery, P. J., D. Wadhera, M. D. Powell, and Y. Chen, 2009: A hurricane boundary layer and wind field model for use in engineering applications. *J. Appl. Meteor. Climatol.*, **48**, 381-405.

Yang, X., and T. DelSole, 2009: Using the ensemble Kalman filter to estimate multiplicative model parameters. Tellus, 61A, 601-609.

Extra/Backup slides

Impact of C_D and C_k on WRF simulations

 Sensitivity to available surface flux options in WRF motivates more systematic investigation

Green and Zhang (2013, MWR)

C_D and C_k in an atmosphere-only model

• In similarity theory, C_k is a function of C_D (scalar flux proportional to momentum flux)

$$-\tau/\rho = u_* \times u_* = C_D U(\Delta U) = u_* \times C_D^{1/2} U$$
$$-H/(c_p \rho) = u_* \times \theta_* = C_k U(\Delta \theta) = \theta_* \times C_D^{1/2} U$$
$$-E/(L_v \rho) = u_* \times q_* = C_k U(\Delta q) = q_* \times C_D^{1/2} U$$

• This means α , V_c , and m also impact C_k !

Effects of α , V_c , and m on C_D curves

2.5

C_D (x10⁻³)

 $\alpha = 1.1$

 α = 1.0

 $\alpha = 0.4$

- Not all parameters are created equal
 - α has huge impact everywhere
 - *m* has large impact only at high winds

Effects of α , V_c , and m on C_k curves

Correlations with min SLP and max V_{10}

- Multi-parameter experiments can find signal in the noise (which parameters are more important?)
- First result: V_c (red curves) uncorrelated with intensity

Correlations with max V_{10} and min SLP (1)

- α (C_D multiplier, blue) changes pressure-wind relationship (PWR)
 - Larger α (more drag at all speeds) decreases maximum V_{10} (weaker storm) for much of TC's life
 - Larger α deepens minimum SLP (**stronger** storm)

Correlations with max V_{10} and min SLP (2)

- β (C_k multiplier, green) has a **minimal** impact on PWR (unlike α)
 - Larger β (higher C_k) increases max V₁₀ (stronger storm)
 - Larger β deepens minimum SLP (stronger storm)

Correlations with max V_{10} and min SLP (2)

- *m* (slope of C_D in high wind regime, orange) also changes PWR
 - Larger *m* (more drag at high winds) only decreases maximum V_{10} when TC is very strong
 - *m* is not correlated with minimum SLP

Future work

- Move to Very Large Eddy Simulation (VLES)
 - The new "gold standard" of TC simulations
 - How does turning off PBL scheme impact results?
- Test C_D independent of C_k (Smith et al. 2012)
 - Goes against similarity theory and WRF
 - But can shed more light on problem
- Incorporate parameter estimation into Penn State's WRF-EnKF system
 - Especially for α , the multiplicative parameter in C_D
 - Requires more near-surface observations

Concluding remarks

- Impact of C_D on TC intensity (PWR) and structure more complicated than Emanuel's PI theory
 - Increased C_D = weaker winds (no surprise)
 - Increased $C_D = \underline{deeper}$ pressure
 - Increased C_D = tighter vortex, stronger secondary circulation (e.g., Bao et al. 2012; Smith et al. 2012)
- Impact of C_k alone is obvious (higher C_k = stronger TC)
- Ongoing/future work
 - LES
 - Parameter estimation