

Estimation of Gravity Wave Spectral Characteristics from High-Resolution Idealized Baroclinic Wave Simulations

Junhong Wei, Fuqing Zhang

Department of Meteorology The Pennsylvania State University

Thursday 11th December, 2014

1 Introduction

2 Methodology

3 Result

4 Conclusion

5 Additional Result

Basics of Gravity Wave Parameterizations

Orographic Gravity Wave

PENNSTATE

One Source: Mountain Narrow Spectrum in c, Since c = 0

Nonorographic Gravity Wave

Multiple Sources: Convection, Jets, Fronts, and Instabilities Broad Spectrum in c

PENNSTATE

- Momentum Flux $\rho_0 \overline{u'w'}$ Is The Key! Eliassen and Palm's (1961) Theorem: $\overline{p'w'} = -(u_0 - c) \rho_0 \overline{u'w'}$
- Parameterzied Wave-Induced Force $WIF_x = -\frac{1}{\rho} \frac{\partial \rho u' w'}{\partial z}$ A Body Forcing Term in the X-Dir Momentum EQN: $\frac{Du_0}{Dt} = CF + PGF + ... + WIF_x$
- If $u_0 > c$ and $\overline{p'w'} > 0$, then $\rho_0 \overline{u'w'} < 0$
- \therefore *WIF_x* < 0 at Gravity Wave Dissipating/Breaking Levels
- \therefore *WIF*_x is decelerating u_0 toward c

Limitation of Current Parameterizations

- No Impact of Horizontal Gradients of Background
- No Impact of Time Change of Background
- Not Coupled to the Model's Meteorology
- The Neglect of Secondary Wave Generation and Breaking

PENNSTATE

- The Neglect of Reflection
- Wave Breaking Process is Simple

Wei and Zhang (2014, JAS)

More Initial Moisture Suggests More Energetic Wave Field at Later Stage

Gravity Wave Spectral Characteristics Are Sensitive to Meteorology Condition

Wei and Zhang (2014, JAMES, accepted)

Trajectories of WP5s/WP5n in Dry Run versus Those in Weak Moist Run

PENNSTATE

- Long Distance of Propagation within Limited Time
- Dependence on the Spatial/Temporal Variability of Complex Background Wind
- Propagations of Gravity Waves May Be Sensitive to Meteorology Condition

1 Introduction

2 Methodology

3 Result

4 Conclusion

5 Additional Result

2D Fourier Transform

COEF_{u(k,l)} = FFT2DF (u(x,y))
Obtain Magnitude and Phase
For Each (k, l)

Find Global Wavenumber K_H For Each (k, l):

$$K_{H}^{2} = K^{2} + L^{2}$$

Where $K = k$; $L = I \frac{N_{x} \Delta x}{N_{y} \Delta y}$

• $COEF_{u(k,\omega)} = FFT2DF(u(x,t))$ Obtain Magnitude and Phase For Each (k,ω)

Find Phase Velocity c For Each (k, ω) :

$$c = -\frac{\omega}{k} \frac{N_x \Delta x}{N_t \Delta t}$$

2D Fourier Transform: An Example

The original figure is from the website provided by Dr. John M. Brayer in Department of Computer Science, University of New Mexico

2D Fourier Transform: An Example

PENN<u>State</u>

The original figure is from the website provided by Dr. John M. Brayer in Department of Computer Science, University of New Mexico

k

k

2D Fourier Transform: An Example

PENN<u>State</u>

The original figure is from the website provided by Dr. John M. Brayer in Department of Computer Science, University of New Mexico

2D Fourier Transform: An Example

PENNSTATE

The original figure is from the website provided by Dr. John M. Brayer in Department of Computer Science, University of New Mexico

2D Fourier Transform: An Example

PENNSTATE

The original figure is from the website provided by Dr. John M. Brayer in Department of Computer Science, University of New Mexico

Calculate $\overline{u'w'}$ versus c

 $\textbf{cospectrum(UW) = REAL(COEF_{u(k,\omega)} COEF_{w(k,\omega)}^{*})}$

 $quadraspec(UW) = IMG(\ COEF_{u(k,\omega)}\ COEF_{w(k,\omega)}^{*})$

- Restart WRF for 120 hrs from 60 h
- WRF Output Temporal Interval $\Delta t = 1 min; \Delta x = \Delta y = 10 km$
- Find Spatial Scale: $50km \le x \le 800km$
- Find Temporal Scale: t ≥ 5min
- Calculate u'w' versus c Based on 2D Fourier Transform

1 Introduction

2 Methodology

3 Result

4 Conclusion

5 Additional Result

$ho \overline{u'w'}$ at 12-km

- The Dominance of Negative Values in pure at 12 km
- Larger Area of Positive Values With More Initial Moisture

12-km cospectrum of u' & w' (color shading) at each latitude (smth=0; taper=0%)

PENNSTATE

Negative Flux Valley Appears to Be Saturated in EXP40

Sensitivity to Moisture for the Flux Below the Scale of 80 km

$\overline{u^{\prime}w^{\prime}}$ versus c ($N_{t}\Delta t=96hr$)

12-km cospectrum of u' & w' (color shading) versus phase speed at each latitude

Minimum of Negative Flux Locates Around BW Phase Speed (~13.9m/s)

1 Introduction

2 Methodology

3 Result

4 Conclusion

5 Additional Result

- For ρu'w' at 12 km, there is a dominance of negative values. However, experiments with more initial moisture suggest larger area of positive values.
- For the cospectrum of $\overline{u'w'}$ at 12 km, $\overline{u'w'}$ below the scale of 80 km is sensitive to the initial moiture.
- For u'w' versus c, the minimum of negative flux appears to locate around the baroclinic wave phase speed (~13.9m/s); A distribution that looks like the dipole structure is seen in EXP80 and EXP100.

1 Introduction

- 2 Methodology
- 3 Result
- 4 Conclusion
- 5 Additional Result

u'w' versus k (same EXP)

PENNSTATE

12-km cospectrum of u' & w' (color shading) at each latitude (smth=0; taper=0%)

$\overline{u^{\prime}w^{\prime}}$ versus c ($N_{t}\Delta t=96hr$)

PENNSTATE

12-km cospectrum of u' & w' (color shading) versus phase speed at each latitude

Minimum of Negative Flux Locates Around BW Phase Speed (13.9m/s)

$\overline{u'w'}$ versus c ($N_t\Delta t=72hr$)

12-km cospectrum of u' & w' (color shading) versus phase speed at each latitude

Minimum of Negative Flux Locates Around BW Phase Speed (13.9m/s)

$\overline{u^{\prime}w^{\prime}}$ versus c ($N_{t}\Delta t=48hr$)

PENNSTATE

12-km cospectrum of u' & w' (color shading) versus phase speed at each latitude

Minimum of Negative Flux Locates Around BW Phase Speed (13.9m/s)

$\overline{u^{\prime}w^{\prime}}$ versus c ($N_{t}\Delta t=24hr$)

12-km cospectrum of u' & w' (color shading) versus phase speed at each latitude

Minimum of Negative Flux Locates Around BW Phase Speed (13.9m/s)