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Kim et al. (Atmosphere-Ocean, 2003)
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Figure 1, The global distribution of the mean temperature wave amplitude
in the layer 38.3 to 9.1 hPa for August 2006 calculated from HIRDLS data.
A filtering procedure has been used to isolate gravity waves with horizontal
wavelengths in the approximate range 100 to 400km. Reproduced from
Yan et al. (2010) with permission (© American Geophysical Union).
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Figure 4. The monthly mean global distributions of temperature wave
amplitude, |T'| (K) computed from (a) the MetUM and (b) the IFS
forecasts for August 2006. The data shown are for 32.3km (MetUM) and
31.2km (IFS) amsl and were calculated using daily forecasts valid at T+6 h.
The resolution of the data is approximately 40 km.

NWP models

m The overall patterns generally match each other.
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More moisture in the initial condition suggests more energetic
gravity wave field at later stage.
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Part |: Motivation

= Motivated by Shutts and Vosper (2011), we seek to
understand the distribution of momentum flux/drag in
high-resolution idealized baroclinic wave simulations of Wei
and Zhang (2014, JAS)

m The impact of gravity wave effects on the general circulation

m Potential application of gravity wave parameterizations in
global models
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Part Il: Methodology

= How to obtain the wave-induced wind perturbation (e.g., u’,
w')?

A high-pass filter is applied to extract wind perturbations with
wavelength below 600 km.
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Part Il: Methodology

m How to calculate momentum flux?

pEP, = pu'w' + L v'b
The second term in the RHS is ignored in the current study.

The bar represents the average over one period/wavelength. In
the currenty study, the bar is the spatial averaging (11-point
running mean along x, then do it again along y).
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Part Il: Methodology

m How to calculate momentum drag?

The wave-induced forcing of the zonal mean flow is described
by the divergence of the flux vector, namely

B 17 = L2 -1 (oEP)
EP, = (EPy, EP,,, EP,,)

: : 1 9EP,,
In the current study, we only investigate — 0
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Part Ill: 12-km pu'w’ (hrz)
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m The dominance negative values in 12-km pu’w’



Part [ll: 12-km —1%EPx (hrz)
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m Wave-like structure in 12-km —%%



Part lll: pu'w’
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m Consistencies among all the experiments
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m Consistencies among all the experiments
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Discussion
Eliassen and Palm (1961) p'w' — _(; — c)pu'w'
Case |

N W>O Uw'>0 e C>u

u'w'<() =y <y

Case ll

/7\& p'_w‘=0 u'w'=0

Case lll u'w'>0 - c<u

/\<>\/ "w' - -
pW<O uw'<() wdp c>u

The relationship between energy flux and momentum flux is
constrained by the above relationships.




Discussion

Fig. 1
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Typical mid-latitude zonal winds U(z) during northern (a) winter and (b) summer. Black curve shows observed winds, grey curve shows model “radia-
tive” winds that result without a wave drag parametrization. Sources of gravity waves with various phase speeds ¢ are also depicted, with the source
and wave breaking symbols similar to those defined in Fig. 10. On these plots, waves ascend vertically upwards since ¢ remains constant, until they
break or reach a critical level ¢ = U(z). (Based on a presentation first used by Lindzen, 1981)

m The breaking levels depends on the source and the
background wind, which both have seasonal variabilities.
(Figure from Kim et al. 2003)
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Discussion

The 12-km pu’w’ is mostly dominated by negative values.
Experiments with more initial moisture content suggest larger
area of positive values.

Compared to pu'w’ |, the 12-km —%% looks noisy, and it

has wave-like structure.

After taking averaging over one Baroclinic wavelength, there
are more consistencies between pu’'w’ and —%%. There
are also consistencies among all the moist runs.

The signs of flux/drag is associated with the wave source and
background flow, which both may have large seasonal
variabilities.

pu’'w’ is comparable to pv/w’. Therefore, it is a 2D problem,
instead 1D problem.



