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Introduction

There are currently two competing 4-D data assimilation
methods for operational NWP.

E4DVar: 4DVar with a mix of ensemble and static
background error covariance.

4DEnVar: same as above, but with linearized model
operations replaced by 4-D ensemble.
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Let the probability distribution of the model state at t = 0 be
given by xo ~ N(x5, B).

4DVar minimizes a cost function to find the x3 that fits x5 and
the set of observations, y; for t =0,1,2,..., T.

The model state is integrated forward in time using M, and
tranformed to observation space using H;.
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Incremental 4DVar

Incremental 4DVar uses linear operators to transform
increments at t = 0 into observation space at t = 7:

H-[M-(x0)] = HT[MT(X(I)) + 0%o)],
H,[M,(x§)] + H.M_dxq,

where H, and M, are linearized about x° between t = 0 and
t=r.
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Solution for single observation

For a set of observations at t = 7, the minimum of the 4DVar
cost function is given by

x3 = x§+ xplA )T (A G T G )T + Re] M ys — Hel(x,)]

xg[H-(x,)"]T < Covariance between xq and x, in observation
space.

H.(x:)'[H;(x;)']T < Variance of x, in observation space.
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E4DVar and 4DEnVar

For ensemble B with no localization and no hybrid covariance,

E4ADVar is the same as 4DEnVar, but with additional linear
approximations for H. and M..

E4DVar:
xo[H-(x;)]T ~ [H.M,B]’
1 & .
- Ne _ 1 Z:IXZJ,n[HTMTxE),n] )

4DEnVar:

1

Ne
G = g 3 %))
€ n=1




Cycling DA experiments

Results from cycling
data assimilation
experiments in

full ensemble mode
with localization show
that E4DVar
persistently
outperforms 4DEnVar
as assimilation
window length T
increases.
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with Lorenz-96
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E4DVar 4DEnVar
2r0.2073 0.2043 0.2116 0.2210 0.2436 0.2891 2r0.2073 0.2043 0.2116 0.2210 0.2436 0.2891
3r0.1928 0.1851 0.1885 0.1986 0.2191 0.2597 3r0.1928 0.1851 0.1885 0.1986 0.2191 0.2597
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o
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3r0.1406 0.1364 0.1382 0.1443
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o
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0.1854.
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0.2102

0.1917
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4-D covariance in Lorenz-96 model

Using the Lorenz-96 model, E4ADVar and 4DEnVar methods
are applied for estimating Pg ,, where

I ! !
Po, = xpxIT.

In each case, 10 samples are drawn from N(x5, B¢) to
estimate the error statistics at t = 0.

x5 is a model state after a spin-up period, and B¢ is a
climatological covariance, estimated over 10 000 data
assimilation cycles.
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Localization

E4DVar: P, is estimated after localizing the covariance at
the beginning of the assimilation window

B — Bop.

4DEnVar: P, is localized after being estimated from
unlocalized B

PO,T — PO,TOP-
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True covariance

The true Py ; is estimated from a 10°-member ensemble
forecast, initialized with samples drawn from N(x§, B€).
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True Pg » for 7 =24 h.
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Results from 100 trials

N =10
e
0.04——= : . ,
---E4DVar (no localization) a
0.035/|~ - ~4DEnVar (no localization) Lt
—E4DVar (localization) N
0.03/L——4DEnVar (localization) Lot i

0.025r Lt |
0.02r -zt

0.015p==zz=2" |
0-01—/ |

E4DVar outperforms 4DEnVar because of better localization!

Mean absolute error of covariance
o
o
o
(42
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Results from 100 trials

Without localization, 4DEnVar will always provide a more
accurate P, than E4DVar because it makes fewer
approximations.

With localization, E4DVar is more accurate because sampling
errors at t = 0 are removed before propagating to t = 7.

Adaptive 4-D, flow-following localization in 4DEnVar is an
active area of research (e.g., Bishop and Hodyss, MWR 2011).
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Equivalent time-dependent localization
Ne =10
0.04 __
8 s o ooty
E4DVar becomes a £ 0,035 A
better proxy for g 003
4DEnVar, when M. 5
uses the perfect base o 00291
state x5, rather than 3 ooz -
Qo
a sample mean. %0_015:__'______, .
2
0036 12 24 28
t(h)

The E4DVar method can estimate the p required at t = 7 that
gives the same result as localizing B.
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Time-dependent p for variable 20
§ ofe=on v,
g
82
The function required to
localize the covariance between g 27=6h .
variable 20 and the remaining £ 0 N
state variables in Py, is 3-2 i
plotted (dashed black) for ¢ deorzn ,.
7=20,6,12 and 24 h. g, NG
8., P
The initial correlation function
is plotted in red. § gT-24h
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Time-dependent p for variable 20
5 2fe-0n v,
N0
The experiment is repeated g,
using 10 new random samples.
E 2tt=6h
The time-dependent lg 0 e
localization associated with the 3-2
p used at t = 0 depends on the c Jeorzn i
additive corrections made to B § . A
during localization to remove g,
spurious correlations—this
relationship is not easily § zt=24h i i
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Summary 9

In full ensemble mode with no static covariance component,
E4DVar consistently outperforms 4DEnVar for the Lorenz
(1996) system.

Experiments using ensembles and a tangent linear model to
estimate time-dependent covariance show that E4DVar largely
from its localization strategy.

An example using the tangent linear model to estimate the 4-D
localization needed to achieve the same result as B-localization
in E4DVar demonstrate major challenges for 4DEnVar.



