Some Issues in Reduced Model Problem

Yicun Zhen and John Harlim

Group Meeting
May 9, 2014

Outline

(1) Description of the reduced model problem
(2) Linear case
(3) Numerical experiments

We assume that the true model is

$$
\begin{align*}
d x & =F_{1}(x, y) d t+\sigma_{x} d W_{x} \tag{1}\\
d y & =\frac{1}{\epsilon} F_{2}(x, y) d t+\frac{\sigma_{y}}{\sqrt{\epsilon}} d W_{y} \tag{2}\\
y_{n}^{o} & =h_{1}\left(x_{n}\right)+h_{2}\left(y_{n}\right)+\xi_{n} \tag{3}
\end{align*}
$$

where the equations for x and y form the prior model.
Equation (3) is the true observational model.

The role of ϵ

- x is the slow process that we can build a model to resolve;
- y is the fast process that we can not model.

Goal:

- build a model for x without explicitly modeling for y;
- build an observational model that only involves x.

$$
\begin{align*}
d x & =F(x) d t+\widetilde{\sigma}_{x} d \widetilde{W}_{x} \tag{4}\\
y^{o} & =h(x)+\widetilde{\xi}_{n} \tag{5}
\end{align*}
$$

Question:

How to choose $F, \widetilde{\sigma}_{x}, h$ and $\widetilde{\xi}_{n}$, so that the analysis/short forecast of the state x using reduced models is as close as possible to those of the true models.

Some partial results:

$$
\begin{array}{rlrl}
d x & =F_{1}(x, y) d t+\sigma_{x} d W_{x} & d x=F(x) d t+\widetilde{\tau} \\
d y & =\frac{1}{\epsilon} F_{2}(x, y) d t+\frac{\sigma_{y}}{\sqrt{\epsilon}} d W_{y} & y^{o}=h(x)+\widetilde{\xi}_{n} \\
y_{n}^{o} & =h_{1}\left(x_{n}\right)+h_{2}\left(y_{n}\right)+\xi_{n} & &
\end{array}
$$

1, We need to significantly modify $F, \widetilde{\sigma}_{x}, h$ and $\widetilde{\xi}_{n}$. Inparticular, h could be very different from $h_{1}, \operatorname{Var}\left(\widetilde{\xi}_{n}\right)$ is no longer the instrumental error variance;
2, We may need to assume some nonzero correlation between the system noise $d \widetilde{W}_{x}$ and the observational noise $\widetilde{\xi}_{n}$;
3, When observations are frequently taken, we may need to assume an extremely large $\operatorname{Var}\left(\widetilde{\xi}_{n}\right)$.

Linear case

We consider the following system (true model):

$$
\begin{align*}
d x & =a_{11} x d t+a_{12} y d t+\sigma_{x} d W_{x} \tag{6}\\
d y & =\frac{a_{21}}{\epsilon} x d t+\frac{a_{22}}{\epsilon} y d t+\sigma_{y} d W_{y} \tag{7}\\
y_{n}^{o} & =h_{1} x_{n}+h_{2} y_{n}+\sqrt{R} v_{n} \tag{8}
\end{align*}
$$

We also asumme a linear reduced model:

$$
\begin{align*}
d x & =\alpha x d t+\widetilde{\sigma}_{x} d \widetilde{W}_{x} \tag{9}\\
y_{n}^{o} & =h x_{n}+\sqrt{r} \widetilde{v}_{n} \tag{10}
\end{align*}
$$

First we convert the prior model to a discrete time system:

$$
\begin{align*}
x_{n+1} & =F_{11} x_{n}+F_{12} y_{n}+\sqrt{q_{x}} W_{x} \tag{11}\\
y_{n+1} & =F_{21} x_{n}+F_{22} y_{n}+\sqrt{q_{y}} W_{y} \tag{12}\\
y_{n}^{o} & =h_{1} x_{n}+h_{2} y_{n}+\sqrt{R} v_{n} \tag{13}
\end{align*}
$$

and the reduced model:

$$
\begin{align*}
x_{n+1} & =\widetilde{F} x_{n}+\sqrt{\widetilde{q}} \widetilde{W}_{x} \tag{14}\\
y_{n}^{o} & =h x_{n}+\sqrt{r} \widetilde{v}_{n} \tag{15}
\end{align*}
$$

Question: How to find those parameters in the reduced model?

Write

$$
\begin{equation*}
y_{n}=I_{n} x_{n}+\eta_{n} \tag{16}
\end{equation*}
$$

for some constant I_{n}, such that $\eta_{n}=y_{n}-I_{n} x_{n}$ and x_{n} are uncorrelated. $I_{n}=\frac{\operatorname{Cov}\left(x_{n}, y_{n}\right)}{\operatorname{Var}\left(x_{n}\right)}$.
Then

$$
\begin{align*}
x_{n+1} & =F_{11} x_{n}+F_{12} y_{n}+\sqrt{q_{x}} W_{x} \\
& =F_{11} x_{n}+F_{12}\left(I_{n} x_{n}+\eta_{n}\right)+\sqrt{q_{x}} W_{x} \\
& =\left(F_{11}+F_{12} I_{n}\right) x_{n}+\left(F_{12} \eta_{n}+\sqrt{q_{x}} W_{x}\right) \tag{17}
\end{align*}
$$

This suggests $\widetilde{F}=F_{11}+F_{12} I_{n}$ and $\widetilde{q}_{x}=F_{12}^{2} \operatorname{Var}\left(\eta_{n}\right)+q_{x}$.

Similarly

$$
\begin{align*}
y_{n}^{o} & =h_{1} x_{n}+h_{2} y_{x}+\sqrt{R} v_{n} \\
& =h_{1} x+h_{2}\left(I_{n} x_{n}+\eta_{n}\right)+\sqrt{R} v_{n} \\
& =\left(h_{1}+h_{2} I_{n}\right) x_{n}+\left(h_{2} \eta_{n}+\sqrt{R} v_{n}\right) \tag{18}
\end{align*}
$$

This suggests $h=h_{1}+h_{2} I_{n}$ and $r=h_{2}^{2} \operatorname{Var}\left(\eta_{n}\right)+R$.

In sum, we rewrite the dynamics of x and the observational model as:

$$
\begin{align*}
x_{n+1} & =\left(F_{11}+F_{12} I_{n}\right) x_{n}+\left(F_{12} \eta_{n}+\sqrt{q_{x}} W_{x}\right) \tag{19}\\
y_{n}^{o} & =\left(h_{1}+h_{2} I_{n}\right) x_{n}+\left(h_{2} \eta_{n}+\sqrt{R} v_{n}\right) \tag{20}
\end{align*}
$$

where the "reduced" system noise is $\left(F_{12} \eta_{n}+\sqrt{q_{x}} W_{x}\right)$, and the "reduced" observational noise is $\left(h_{2} \eta_{n}+\sqrt{R} v_{n}\right)$. They are correlated! The correlation is $F_{12} h_{2} \operatorname{Var}\left(\eta_{n}\right)$.

The only shortcoming of the decomposition above is that the "reduced" system noise and observational noise are no longer white. This effect is significant when observations are frequently taken.

Numerical results

Consider the following system (true model):

$$
\begin{align*}
d x & =-x d t+y d t+2 d W_{x} \tag{21}\\
d y & =-\frac{1}{\epsilon} x d t-\frac{1}{\epsilon} y d t+\frac{2}{\sqrt{\epsilon}} d W_{y} \tag{22}\\
y_{n}^{o} & =0.8 x_{n}+0.5 y_{n}+\sqrt{R} v_{n} \tag{23}
\end{align*}
$$

where $R=0.1 \operatorname{Var}(x)$. Observations are taken for every $\Delta t=0.1$ time units. $\left(x_{n}=x(0.1 n), y_{n}=y(0.1 n)\right)$.

h-r plot

Contour plot of the error in percentage for varying h and r and fixed $\widetilde{F}, \widetilde{q}_{x}$ and $c=0$.

h-r plot

Contour plot of the error in percentage for varying h and r and fixed $\widetilde{F}, \widetilde{q}_{x}$ and $c=0$.

h-c plot

Contour plot of the error in percentage for varying h and c and fixed $\widetilde{F}, \widetilde{q}_{x}$ and r.

h-c plot

Contour plot of the error in percentage for varying h and c and fixed $\widetilde{F}, \widetilde{q}_{x}$ and r.

h-r plot for $\Delta t=0.01$ and $\Delta t=0.001$.

Contour plot of the error in percentage for varying h and r and fixed $\widetilde{F}, \widetilde{q}_{x}$ and $c=0$.

Question: why do we need a large r when Δt is small?

Recall the reduced model:

$$
\begin{equation*}
y_{n}^{o}=\left(h_{1}+h_{2} I_{n}\right) x_{n}+\left(h_{2} \eta_{n}+\sqrt{R} v_{n}\right) \tag{24}
\end{equation*}
$$

where $\eta_{n}=y_{n}-I_{n} x_{n}$.
η_{n} is not a white noise!
When $\Delta t=0.01$ or $0.001, \eta_{n}$ and η_{n+1} are highly correlated.

A mathematical justification

Suppose at a fixed time point t, we have two observations $y_{n, 1}^{0}$ and $y_{n, 2}^{0}$ which are drawn from the same observational model. Now assume that they are the same (i.e. they have correlation 1). Two ways to assimilate these two observations:

1, only assimilate one of $y_{n, 1}^{0}$ and $y_{n, 2}^{0}$ and use the instrumental R;
2, assimilate these two observations one by one but use an inflated r.

Lemma

Using $r=2 R$ in the second way we can get the same result by the first way.

Consider the system:

$$
\begin{align*}
& d x=-x d t+2 d W_{x} \tag{25}\\
& d y=-y d t+2 d W_{y} \tag{26}\\
& y_{n}^{o}=0.8 x_{n}+0.5 y_{n}+\sqrt{R} v_{n} . \tag{27}
\end{align*}
$$

There is a natural way of choosing the reduced prior model:

$$
\begin{equation*}
d x=-x d t+2 d W_{x} \tag{28}
\end{equation*}
$$

And it is natural to assume for this model that the reduced observational noise and the system noise are uncorrelated. Hence the only parameters left to determine are h and r.

h-r plot for $\Delta t=0.1,0.01,0.001$.

Summary

1, We need to significantly modify $F, \widetilde{\sigma}_{x}, h$ and $\widetilde{\xi}_{n}$. Inparticular, h could be very different from $h_{1}, \operatorname{Var}\left(\widetilde{\xi}_{n}\right)$ is no longer the instrumental error variance;
2, We may need to assume some nonzero correlation between the system noise $d \widetilde{W}_{x}$ and the observational noise $\widetilde{\xi}_{n}$; 3, When observations are frequently taken, we may need to assume an extremely large $\operatorname{Var}\left(\widetilde{\xi}_{n}\right)$.

