Using a local coordinate system in a Large Eddy Simulation to account for the effects of streamline curvature

> Ben Green Group meeting, December 11 2013

Problem overview

- Want to simulate hurricane boundary layer (HBL)
- HBL is turbulent, so we want to resolve turbulence
 - Resolved turbulence = Large Eddy Simulation (LES)
 - LES grid spacing < 100 m
- Problem: Too expensive to run LES for an entire tropical cyclone (TC)
- Solution: Run LES for a *small portion* of TC domain
- But this is easier said than done!

LES setup

- We use NCAR's LES
- Coded in strict Cartesian coordinates. Why?
 - Most applications use weak, <u>geostrophic</u> large-scale flow
 - Lateral boundaries are <u>periodic</u> necessary to solve elliptic pressure equation (via Fourier transform)*
- Large-scale flow (external pressure gradient) is prescribed via <u>geostrophic</u> wind
- Problem: Hurricane winds are **not** in geostrophic balance!
 We need to include effects of curvature (centrifugal force)

*Yicun, do you know anything about periodic boundary conditions in cylindrical coordinates?

Can NCAR LES account for curvature?

- Introduce a local coordinate system around a cylinder with radius $\rm R_{\rm c}$
- z direction (k unit vector) always points up
- *x* direction (**i** unit vector) is normal to curved surface
- y direction (j unit vector) is tangent to curved surface
- Velocity = (u, v, w)

Governing equations (1)

• Inviscid, buoyancy-free, inertial momentum eqn:

$$\frac{D\mathbf{v}}{Dt} = -\frac{1}{\rho}\nabla p - g\mathbf{k}$$

 In a local coordinate system, we need to account for changes in positions of unit vectors:

$$\frac{D\mathbf{v}}{Dt} = \mathbf{i}\frac{Du}{Dt} + \mathbf{j}\frac{Dv}{Dt} + \mathbf{k}\frac{Dw}{Dt} + u\frac{D\mathbf{i}}{Dt} + v\frac{D\mathbf{j}}{Dt} + w\frac{D\mathbf{k}}{Dt}$$

• For our local coordinate system, it can be shown that

$$\frac{D\mathbf{v}}{Dt} = \mathbf{i} \left(\frac{Du}{Dt} - \frac{v^2}{r} \right) + \mathbf{j} \left(\frac{Dv}{Dt} + \frac{uv}{r} \right) + \mathbf{k} \frac{Dw}{Dt}$$

Governing equations (2)

• Momentum equations in **local** coordinates are:

$$\frac{Du}{Dt} - \frac{v^2}{r} = -\frac{1}{\rho} \frac{\partial p}{\partial x}$$
$$\frac{Dv}{Dt} + \frac{uv}{r} = -\frac{1}{\rho} \frac{\partial p}{\partial y}$$
$$\frac{Dw}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g$$

• The corresponding **incompressible** continuity equation is:

$$\frac{u}{r} + \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

• Can we use this equation set?

Governing equations (3)

In cylindrical coordinates, horizontal vorticity is conserved.
 We want this to be the case for local coordinates, too!

$$\frac{\partial \zeta}{\partial t} + u \frac{\partial \zeta}{\partial x} + v \frac{\partial \zeta}{\partial y} + \zeta \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{u}{r} \right) = -\frac{u}{r} \frac{\partial u}{\partial y} \quad \text{where} \quad \zeta = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} + \frac{v}{r}$$

 BUT, scale analysis reveals the (u/r) terms are two orders of magnitude smaller than all other terms. Dropping these terms, the governing equations become:

$$\frac{Du}{Dt} - \frac{v^2}{r} = -\frac{1}{\rho} \frac{\partial p}{\partial x} \qquad \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$
$$\frac{Dv}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial y} \qquad \frac{Dw}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g$$

• Problem: terms with 1/r can't be used in NCAR LES!

The 1/r terms...

- We need to use periodic boundary conditions in *x*-*y* plane
- Problem: x and r are in the same direction, so increasing x = increasing r. Thus, LES can't be periodic in x direction ⁽³⁾
- Solution: Replace r by a <u>fixed</u> radius R_c. This "thin shell" approximation only works if R_c >> domain width in r (x).
 - Example: for $R_c = 50 \text{ km}$, domain width in x should be $\leq 5 \text{ km}$
 - This approximation needs to be applied very carefully (I know this all too well)!

"Thin shell" approximation: $r \approx R_c$

• Momentum equations in **local** coordinates become:

$$\frac{Du}{Dt} - \frac{v^2}{R_c} = -\frac{1}{\rho} \frac{\partial p}{\partial x}$$
$$\frac{Dv}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial y}$$
$$\frac{Dw}{Dt} = -\frac{1}{\rho} \frac{\partial p}{\partial z} - g$$

• The corresponding **incompressible** continuity equation is:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$$

This can be coded into NCAR LES. But will there be problems?

Instability check (1)

 Linearize horizontal equations with base state (U, V, P) and perturbations (u', v', p'). Removing base-state-only terms and products of perturbations,

$$\frac{\partial u'}{\partial t} + U \frac{\partial u'}{\partial x} + V \frac{\partial u'}{\partial y} - 2V \frac{v'}{R_c} = -\frac{1}{\rho} \frac{\partial p'}{\partial x}$$
$$\frac{\partial v'}{\partial t} + U \frac{\partial v'}{\partial x} + V \frac{\partial v'}{\partial y} = -\frac{1}{\rho} \frac{\partial p'}{\partial y}$$

• The corresponding 2-D continuity equation is:

$$\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} = 0$$

• Define a stream function ψ that satisfies continuity:

$$(u',v') = \left(-\frac{\partial\psi}{\partial y},\frac{\partial\psi}{\partial x}\right)$$

Instability check (2)

• Use stream function to find prognostic equation for vorticity $\zeta = \frac{\partial v'}{\partial x} - \frac{\partial u'}{\partial y} = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = \nabla^2 \psi$:

$$\frac{\partial \zeta}{\partial t} + U \frac{\partial \zeta}{\partial x} + V \frac{\partial \zeta}{\partial y} = -\frac{2V}{R_c^2} \frac{\partial^2 \psi}{\partial x \partial y}$$

• Assume solutions of the form $\psi = \hat{\psi} \exp(ik_x x + ik_y y - i\omega t)$:

$$\omega - k_{x}U - k_{y}V = i\frac{2k_{x}k_{y}}{k_{x}^{2} + k_{y}^{2}}\frac{V}{R_{c}^{2}}$$

- Instabilities occur when RHS is positive for V > 0, most unstable when $k_x = k_y$ (same instability as others find)
- So this equation set is no good. The best we can do is to "filter out" the instability by replacing v/R_c with V/R_c. NCAR doesn't like that... so I give up on this.

Summary

- We want to use LES to look at HBL
- Periodic boundary conditions mean cylindrical polar coordinate LES is not tractable
- We can adopt a **local** Cartesian coordinate system in an *attempt* to use idealized LES
- Local coordinate systems are tricky and can introduce unwanted instabilities
- The equation set used by Nakanishi and Niino (2012, JAS) is stable (not shown here), but is not popular among NCAR scientists.
- Good learning experience, but aggravating!