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Introduction

Our current state-of-the-art data assimilation systems (e.g.,
4DVar, EnKF, and hybrid methods) operate under the
assumptions of linear model dynamics and Gaussian errors.



Introduction
These assumptions have taken us a long way!
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Introduction

So, why bother trying to solve this problem?

Model resolution: Gaussian assumption may be more severe
at smaller scales.

Adoption of ensemble data assimilation: useful
information is ignored when ensembles are assumed to follow
a Guassian error distribution.

Will our current data assimilation methods still be the best
option as model resolution and ensemble size increase?



Bayesian filtering

Let xt be a vector of state variables, and yt be a vector of
observations that are valid at time t.

xt and yt are given by the (possibly) nonlinear equations:

xt = M(xt−1) + ηt ,

yt = H(xt) + εt ,

where ηt and εt are stochastic terms that represent model and
observation errors.

Let yt denote all observations up to time t.



Bayesian filtering

The probability of xt , given all information up to this time is
given by Bayes’ theorem:

p(xt |yt) =
p(yt |xt)p(xt |yt−1)∫

p(yt |xt)p(xt |yt−1)dxt
.

Posterior: p(xt |yt)

Likelihood: p(yt |xt)

Prior: p(xt |yt−1)

Evidence/support:
∫

p(yt |xt)p(xt |yt−1)



Particle filtering
Use an ensemble to construct an emperical estimate of the
posterior probability distribution:

p(xt |yt) ≈
N∑

n=1
wn

t δ(xt − xn
t ).

Use the particle representation of p(xt |yt) to approximate
expectations of functions f of the model state:

f (xt) =
∫

f (xt)p(xt |yt)dxt ,

≈
N∑

n=1
wn

t f (xn
t ).

Examples of f (xt) are the mean and covariance of xt .



Particle filtering

For the simplest particle filter, the weights are given by

wn
t ∝ wn

t−1p(yt |xn
t )



Particle filtering

When the particles begin to move away from observations, a
resampling step is needed to produce a more informative
ensemble.

The simplest example is the bootstrap filter: sample N new
particles from the posterior error distribution with
replacement, and assign each new particle a weight of 1

N .
The expression for wn

t at the next cycle simplifies further:

wn
t =

p(yt |xn
t )∑N

n=1(yt |xn
t )
.



Particle filtering: example

For Gaussian observation errors, the nth weight is given by

wn
t = A

exp
{
−1

2 [yt − H(xn
t )]

T R−1[yt − H(xn
t )]

}
∑N

k=1 exp
{
−1

2 [yt − H(xk
t )]

T R−1[yt − H(xk
t )]

} ,
and the posterior mean can be approximated with

xt ≈
N∑

n=1
wn

t xn
t .



Problems with particle filtering

Filter degeneracy: a finite ensemble will eventually lose
track of the signal, in which case, the weights become
concentrated on a small number of particles. This problem
occurs faster when the dimensions of x and y are large
(Snyder et al. 2008, MWR).

Resampling: the process of resampling from the posterior
can be problematic, since duplicate particles will be produced.
This is a larger problem for deterministic models; i.e., no
stochastic terms.



One solution

For high-dimensional systems, these weights are determined by
applying a method called sequential importance sampling.

Particles are sampled from a subspace of the model space
using a proposal distribution that is typically conditioned on
observations between cycles (e.g., Leeuwen 2010, QJRMS).



My solution

Expand w t
n from a scalar to a vector with the same dimension

as x, so that

xt ≈
N∑

n=1
wn

t ◦ xn
t .

This is the same as estimating a weight for every state variable
in each single particle.



Local likelihood particle filter

One way of obtaining this result is to evaluate the likelihood
locally for each variable, so that observations at large distances
from a grid point will not effect the local weight.

This requires a likelihood function that depends on the
physical distance between the model grid point and
observation locations.



Local likelihood particle filter (LLPF)

A simple example is to use a function that decays
exponentially away from the location of an observation, so
that the likelihood of the the i th variable given the j th

observation is written

p(yt,j |xn
t,i) = [p(yt,j |xn

t )−
1

NeNy
]exp(−di ,j

R ) +
1

NeNy
,

where di ,j is the physical distance between the observation and
model grid point, and R is a tunable localization radius.



Local likelihood particle filter (LLPF)
The Lorenze-96 model is used to test this idea and compare
with EnKF:

dxt+1,i

dt = (xt,i+1 − xt,i−1)xt,i−1 − xt,i + 10.

Experiment details:

100 variables

Observations are taken from a “truth” run at every other grid
point, with added Gaussian noise (σ = 1).

These observations are assimilated every 12 h (dt = 0.1) for
1000 cycles.

Relaxation coefficient and localization radius for EnKF are
tuned for each ensemble size.



Local likelihood particle filter (LLPF)
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RMSEs are averaged every 30 cycles.



Local likelihood particle filter (LLPF)

Ne = 100
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RMSEs are averaged every 30 cycles.



Local likelihood particle filter (LLPF)

Ne = 200
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EnKF

LLPF

RMSEs are averaged every 30 cycles.



Conclusions

A new approach to particle filtering, called LLPF, has been
introduced for systems that contain a large spatial dimension.

This method makes use of a distance-dependent likelihood
function to prevent filter degeneracy.

The LLPF is shown to be stable without the use of an
optimal proposal density.

Much more work needs to be done; e.g., resampling, inflation,
better choices for likelihood function, etc.


