Test of Adaptive Covariance
Inflation Methods on the
Lorenz-96 model
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Lorenz-96 model

dx;/dt = X1 X4 X5 X - X+ F
for cyclic i=1,...K

K=40

At=0.05

F=8

40 ensemble members

Error statistics:
RMSE = sqrt(Z; (X-x%)%/ K)
ens spread = X, std(x,) / K
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Sampling error
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Model error
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Covariance inflation

model error: unknown to EnKF
prior spread too small (too confident) x

covariance inflation (Anderson and
Anderson 1999)

XP « A xP

oP « A oP
x denote ensemble perturbations :
0’=X x%/ (N-1)

goal: RMSE?2= ¢gP2 4 ¢°2 _ _
prior posterior



Relaxation methods

relaxation to prior perturbation (RTPP)
(Zhang et al. 2004)
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Relaxation methods

relaxation to prior perturbation (RTPP) advantage: conserves some prior
(Zhang et al. 2004) perturbation structure
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Relaxation methods

relaxation to prior perturbation (RTPP) ~ advantage: conserves some prior
(Zhang et al. 2004) perturbation structure

disadvantage: takes effect later, rely
d «— - d b ’
X (1 O() X'+ aX on model to increase the spread

relaxation to prior spread (RTPS)
(Whitaker and Hamill 2012)

0% « (1-a) 0% + a o

X2 « A X3, where A = a(o?-0?) /02+1
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Adaptive methods

It is costly to tune the inflation/relaxation methods (A, a)

adaptive inflation (Anderson 2007)
RMSEbZ: }\ozo-bz + 00 2
update A, o, with A° using Bayesian inference
spatially varying A (Anderson 2008)

adaptive relaxation (new)
RMSE32= 2?2032 4 ¢°?
X2 (1-0) x2 + axP=Ax?
decrease in spread X = (0?/0?) x2 =y x?
(1-a) +ay=A
a=(A-1)/(y-1)



Comparison among methods
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Other error sources

non-Gaussian error covariance

observations located off grid:
nonlinearity in the true H operator

observations located randomly:

. _ test inflation methods
partial coverage: too sparse / too dense
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Randomly located
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Randomly located observations

AA = AAL AR



Randomly located observations
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Randomly located observations

AA=AA.

domain-averaged inflation

domain-averaged RTPP M



Conclusion

verified some well-known data assimilation problems

adaptive methods can find the optimum A, o values during EnKF
cycle

randomly located observations cause trouble: need spatially
varying methods

Further work: implementation of adaptive RTPP in atmospheric
models



