# **Localization Radius**

Yicun Zhen

Sep 13, 2013





# 2 Mathematical Stuff and Algorithm



# Steps

- Define a cost function F
- compute the value of cost function for several different localization parameter  $\lambda$
- choose the 
   \u03c6 that gives the least value of F
- use that  $\lambda$  to do sequential localized EnKF

### Question

How to define the cost function  $\lambda$ ?

## **Definition in last time**

Fix the influence radius for each observation  $y_i^o$ , and compute the mean difference of the updates for the localized and un-localized sequential EnKF.



#### cost function in the last time

$$F(\lambda, i) = \int \sum_{j=1}^{n} (r_{ij}^{s} \rho_{\lambda}(d_{ij}) - r_{ij})^{2} p(B|S) dB$$

where n is the number of gridpoints in the neighbor region in consideration.

## notation

 $r_{ij}^{s}$  is the sample regression coefficient of using observation  $y_{i}^{o}$  to update mean state at grid point  $x_{i}$ 

$$X_j^{mean} \leftarrow X_j^{mean} + r_{ij}^s \Delta y_i$$

 $r_{ij}$  is the true regression coefficient of using observation  $y_i^o$  to update mean state at grid point  $x_i$ 

$$X_j^{mean} \leftarrow X_j^{mean} + r_{ij} \Delta y_i$$

## Critical problem with last cost function

The resulting  $\lambda$  is always equal to 0 which means no localization is needed.

# **New cost function**

$$F(\lambda, n) = F_V(\lambda, n) - F_E(\lambda, n)$$
  
where

- *F<sub>E</sub>* is an updating effect function
- *F<sub>V</sub>* is a pseudo-variance function

## **Definition of** $F_E$ and $F_V$

$$F_{E}(\lambda, n) = C(S) \left\{ \int \sum_{i=2}^{n} [r_{i}^{2} - (r_{i}^{s} \rho_{\lambda}(d_{i}) - r_{i})^{2}] \rho(B^{s}|B) \rho(B) dB \right\}$$
(1)

where C(S) is a constant depending only on the sample and *n* such that:

$$C(S)\int p(B^{s}|B)p(B)dB=1$$
(2)

And we define the variance-like function:

$$F_{V}(\lambda,n) = C(S) \left\{ \int \sum_{i=2}^{n} \rho_{\lambda}(d_{i})^{2} (r_{i}^{s} - r_{i})^{2} p(B^{s}|B) p(B) dB \right\}$$
(3)

# Theorem

$$F_{E}(\lambda, n) = \sum_{i=2}^{n} \left\{ 2\rho_{\lambda}(d_{i})\theta_{i}e_{i} \frac{\int_{0}^{\infty} e^{-\frac{1}{2}t_{1}^{2}} \frac{t_{1}^{N-n-1}}{rt_{1}^{2}+|\epsilon_{1}|^{2}} dt_{1}}{\int_{0}^{\infty} e^{-\frac{1}{2}t_{1}^{2}} t_{1}^{N-n-1} dt_{1}} - \rho_{\lambda}^{2}(d_{i})\theta_{i}^{2} \right\}$$
(4)  
$$F_{V}(\lambda, n) = \sum_{i=2}^{n} \rho_{\lambda}^{2}(d_{i}) \left\{ \theta_{i}^{2} - 2\theta_{i}e_{i} \frac{\int_{0}^{\infty} e^{-\frac{1}{2}t_{1}^{2}} \frac{t_{1}^{N-n-1}}{rt_{1}^{2}+|\epsilon_{1}|^{2}} dt_{1}}{\int_{0}^{\infty} e^{-\frac{1}{2}t_{1}^{2}} t_{1}^{N-n-1} dt_{1}} + \left( \frac{\Delta_{ii}|\epsilon_{1}|^{2}}{N-n-1} + e_{i}^{2} \right) \frac{\int_{0}^{\infty} e^{-\frac{1}{2}t_{1}^{2}} \frac{t_{1}^{N-n-1}}{rt_{1}^{2}+|\epsilon_{1}|^{2}} dt_{1}}{\int_{0}^{\infty} e^{-\frac{1}{2}t_{1}^{2}} \frac{t_{1}^{N-n-1}}{rt_{1}^{2}+|\epsilon_{1}|^{2}} dt_{1}} \right\}$$
(5)

# Algorithm

- Have some value of  $\lambda$  in mind.
- For each observation y<sup>o</sup><sub>i</sub> and for those λ, find the influence radius (hence n<sub>λ</sub>)for each λ compute the value of the new cost function F for each λ and find the λ that corresponds to the minimum F value.
- Hence for each observation y<sup>o</sup><sub>i</sub> we have a unique λ<sub>i</sub> that is optimal for y<sup>o</sup><sub>i</sub>
- Use any method (for example, kernel density estimation) to find the maximum likelihood of  $\lambda$
- use the maximum likelihood λ to be the λ we use in this assimilation cycle.

# computational cost

 $O(N^3m)$ 

## **Notations**

Model: Lorentz 96. n: number of variables. m:number of observations. N: ensemble size.

#### Set 1

## n=40,m=20,N=31,41,51,61





(b) N=41



**FMSE adaptive levelsd** 

FMSE Sonit dow 10

adaptive large de



(d) N=61

Conclusion: larger ensemble size  $\Rightarrow$ larger localization radius

#### Set 1

## n=40,m=20,N=31,41,51,61





Plot of F values at different observation

(g) N=61

#### Set 2

### n=48,N=51,m=12,16,24







(g) m=12,N=51







(j) m=12,N=31



(k) m=16,N=31



(I) m=24,N=31



## N=51,n=40,300,1000, m=20,150,500







(m) m=20,n=40

(n) m=150,n=300

(o) m=500,n=1000