Localization Radius

Yicun Zhen

Sep 13, 2013

Outline

(1) Scheme
(2) Mathematical Stuff and Algorithm
(3) Numerical Tests

Steps

- Define a cost function F
- compute the value of cost function for several different localization parameter λ
- choose the λ that gives the least value of F
- use that λ to do sequential localized EnKF

Question

How to define the cost function λ ?

Definition in last time

Fix the influence radius for each observation y_{i}^{0}, and compute the mean difference of the updates for the localized and un-localized sequential EnKF.

cost function in the last time

$F(\lambda, i)=\int \sum_{j=1}^{n}\left(r_{i j}^{S} \rho_{\lambda}\left(d_{i j}\right)-r_{i j}\right)^{2} p(B \mid S) d B$
where n is the number of gridpoints in the neighbor region in consideration.

notation

$r_{i j}^{S}$ is the sample regression coefficient of using observation y_{i}^{o}
to update mean state at grid point x_{j}

$$
X_{j}^{\text {mean }} \leftarrow X_{j}^{\text {mean }}+r_{i j}^{s} \Delta y_{i}
$$

$r_{i j}$ is the true regression coefficient of using observation y_{i}^{0} to update mean state at grid point x_{j}

$$
X_{j}^{\text {mean }} \leftarrow X_{j}^{\text {mean }}+r_{i j} \Delta y_{i}
$$

Critical problem with last cost function

The resulting λ is always equal to 0 which means no localization is needed.

New cost function

$F(\lambda, n)=F_{V}(\lambda, n)-F_{E}(\lambda, n)$
where

- F_{E} is an updating effect function
- F_{V} is a pseudo-variance function

Definition of F_{E} and F_{V}

$$
\begin{equation*}
F_{E}(\lambda, n)=C(S)\left\{\int \sum_{i=2}^{n}\left[r_{i}^{2}-\left(r_{i}^{s} \rho_{\lambda}\left(d_{i}\right)-r_{i}\right)^{2}\right] p\left(B^{s} \mid B\right) p(B) d B\right\} \tag{1}
\end{equation*}
$$

where $C(S)$ is a constant depending only on the sample and n such that:

$$
\begin{equation*}
C(S) \int p\left(B^{s} \mid B\right) p(B) d B=1 \tag{2}
\end{equation*}
$$

And we define the variance-like function:

$$
\begin{equation*}
F_{V}(\lambda, n)=C(S)\left\{\int \sum_{i=2}^{n} \rho_{\lambda}\left(d_{i}\right)^{2}\left(r_{i}^{s}-r_{i}\right)^{2} p\left(B^{s} \mid B\right) p(B) d B\right\} \tag{3}
\end{equation*}
$$

Theorem

$$
\begin{align*}
& F_{E}(\lambda, n)=\sum_{i=2}^{n}\left\{2 \rho_{\lambda}\left(d_{i}\right) \theta_{i} e_{i} \frac{\int_{0}^{\infty} e^{-\frac{1}{2} t_{1}^{2} t_{1}} \frac{t_{1}^{N-n-1}}{t_{1}^{2}+|\epsilon \epsilon|^{2}} d t_{1}}{\int_{0}^{\infty} e^{-\frac{1}{2} t_{1}^{2}} t_{1}^{N-n-1} d t_{1}}-\rho_{\lambda}^{2}\left(d_{i}\right) \theta_{i}^{2}\right\} \tag{4}\\
& F_{V}(\lambda, n)=\sum_{i=2}^{n} \rho_{\lambda}^{2}\left(d_{i}\right)\left\{\theta_{i}^{2}-2 \theta_{i} e_{i} \frac{\int_{0}^{\infty} e^{-\frac{1}{2} t_{1}^{2}} \frac{t_{1}^{N}}{t_{1}^{2}+n-\left|\epsilon_{1}\right|^{2}} d t_{1}}{\int_{0}^{\infty} e^{-\frac{1}{2} t_{i}} t_{1}^{N-n-1} d t_{1}}+\right. \\
& \left.\left(\frac{\Delta_{i i}\left|\epsilon_{1}\right|^{2}}{N-n-1}+e_{i}^{2}\right) \frac{\int_{0}^{\infty} e^{-\frac{1}{2} t_{1}^{2}} \frac{t_{1}^{N-n-1}}{\left(\left.t_{2}^{2}| | \epsilon_{1}\right|^{2}\right)^{2}} d t_{1}}{\int_{0}^{\infty} e^{-\frac{1}{2} t_{1}^{2}} t_{1}^{N-1} d t_{1}}\right\} \tag{5}
\end{align*}
$$

Algorithm

- Have some value of λ in mind.
- For each observation y_{i}^{0} and for those λ, find the influence radius (hence n_{λ})for each λ compute the value of the new cost function F for each λ and find the λ that corresponds to the minimum F value.
- Hence for each observation y_{i}^{0} we have a unique λ_{i} that is optimal for y_{i}^{0}
- Use any method (for example, kernel density estimation) to find the maximum likelihood of λ
- use the maximum likelihood λ to be the λ we use in this assimilation cycle.

computational cost

$O\left(N^{3} m\right)$

Notations

Model: Lorentz 96.
n : number of variables. m :number of observations. N : ensemble size.

Set 1

$$
\mathrm{n}=40, \mathrm{~m}=20, \mathrm{~N}=31,41,51,61
$$

Set 1

$$
\mathrm{n}=40, \mathrm{~m}=20, \mathrm{~N}=31,41,51,61
$$

(d) $\mathrm{N}=31$

(g) $N=61$

(e) $\mathrm{N}=41$

(f) $\mathrm{N}=51$

Plot of F values at different observation

Set 2

$n=48, N=51, m=12,16,24$

(g) $\mathrm{m}=12, \mathrm{~N}=51$

(j) $m=12, N=31$

(h) $\mathrm{m}=16, \mathrm{~N}=51$

(k) $m=16, N=31$
(I) $\mathrm{m}=24, \mathrm{~N}=31$

Set 3

$N=51, n=40,300,1000, m=20,150,500$

(m) $m=20, n=40$

(n) $m=150, n=300$

(o) $\mathrm{m}=500, \mathrm{n}=1000$

