Impact of Assimilating Radar Observations on Storm-scale EnKF System within Realistic Mesoscale Environment

By

Nusrat Yussouf ^{1,2} Dustan Wheatley ^{1,2} and David Stensrud ²

- 1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, OK.
- 2. NOAA/National Severe Storms Laboratory

Motivation

- Assimilation of radar observations on storm-scale NWP model are essential for the predictions of severe thunderstorms.
- The development and evolution of severe thunderstorm events are strongly tied to the environment in which they develop.
- It is important to incorporate the influence of environmental variability and mesoscale forcing on the storm scale flows.

Recent Work

- Mesoscale WRF/DART EnKF system developed at NSSL shows promise. Fujita et al. 2007, Stensrud et al. 2009, Wheatley and Stensrud 2010.
- Storm-scale ensemble initialized from this 3D realistic mesoscale EnKF system improves the predictions of thunderstorm characteristics using 3DVAR.

Gao et al. 2008, Stensrud and Gao, 2010

 Incorporate a storm-scale ensemble within the NSSL WRF/DART EnKF mesoscale ensemble system.

The impact of realistic mesoscale environment on storm-scale assimilation using EnKF data assimilation technique.

May 8, 2003 Oklahoma City Supercell

Mesoscale Ensemble

- WRF-ARW v2.2
 - Eastern two-thirds of CONUS.
 - > 20-km horizontal grid spacing.
 - > 35 vertical levels.
 - ➤ Mean IC/BC from 09 UTC NCEP SREF.
- 30 member ensemble
 - IC/BC perturbations from WRF-Var (Torn et al. 2006); also, soil moisture perturbations.
 - Physics diversity.
 - > Assimilate hourly T, T_d , u, v and p.
 - > Data Assimilation Research Testbed (DART).

Storm-scale Ensemble

- 30 member ensemble
 - > One-way nested within the 30-member mesoscale ensemble.
 - > 240x240 km wide.
 - > 2-km horizontal grid spacing.

Physics:
Microphysics: Purdue Lin.
PBL: YSU.
Shortwave radiation: Dudhia.
Longwave radiation: RRTM
Land Surface model: Noah

EnKF Experimental Design

- Routinely available surface and upper air observations are assimilated on the mesoscale domain for 12 hours.
- Radar observations assimilated every 5-min for 1 hour.

EnKF Radar-Data Assimilation

- Radial velocity and reflectivity observations from KOUN radar are assimilated at native radar coordinates.
- 1 km range resolution and 1° azimuthal sampling.

- Assimilate reflectivity observations ≥ 0 dBZ and radial velocity only where reflectivity > 5 dBZ.
- Additive noise technique to maintain spread -(Dowell and Wicker, 2009).

dBZ Difference (Posterior – Prior)

Member 6

Member 18

21:30

22:00

Isolines of 55°F Surface Dewpoint Temperature at 21 Z

OUN Soundings

Ens. mean T profile in red. Ens. mean Td profile in blue. Rawinsonde observations in black.

CIN (J/kg) at 21:10Z

Analyses at 22:00 Z

Ens mem 6

Ens mem 18

At 21:10 Z

- The spurious cells are very hard to suppress.
 - Environment has very weak convective inhibition.
 - \circ Strong mesoscale forcing embedded in the flow.

Acknowledgements:

David Dowell (NCAR) Lou Wicker (NSSL)