A simple state and observation
hetwork dependent multiplicative
inflation algorithm



Inflation algorithms (applied to posterior)

(1 Simple covariance inflation (a > 1)

X, = X,
(2 Relaxation to prior (0 <a < 1)

x, = ax, + (1 —a)x

/

A
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v Simple cov inflation as in Anderson and Anderson (1999)
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- Pros:
e simple
- Cons:

e potential problems when observing
network and/or dynamics are not
homogeneous.

e doesn’t add any new directions to ensemble.



v Relaxation to prior as in Zhang et al (2004)
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- Pros:
e no inflation where there are no increments.
e more inflation where there are dense/accurate obs.
e retains growing structures in background.
- Cons:

e may converge to leading Lyapunov vector
(introducing co-linearity to ensemble
perturbations).

e removes part of the rotation in ensemble
space introduced by analysis step.



State-dependent covariance inflation (proposed)
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- Motivation:

e sampling error largest where s, /s, is large (Sacher and
Bartello 2008 MWR).

e model error is a larger fraction of background error in
regions of dense/accurate obs (where s, /s, is large, Daley and
Menard 1993 MWR).

e adaptively estimated inflation (Anderson 2009) looks like S,/s,
- Pros:

e no inflation where there are no increments.

e more inflation where there are dense/accurate obs.
- Cons:

e potentially large spatial gradients in inflation may disrupt
growing structures.



Effect of inflation on posterior spread when prior spread = 1
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Tests with a simple GCM

2-level PE model on a sphere (Lee and Held, 1993 with parameters as in
Hamill and Whitaker, 2010).

603 obs of T, verticaly averaged wind with 1°K, 1 ms? error at sonde
locations sampled from a T42 nature run. Assimilation with 20 member
EnKF at T31 resolution every 12-h, with Gaspari-Cohn type localization.

Error measured in vertically averaged zonal wind over 150 days of
assimilation.

Ob locations and snapshot of mid-level temp




Simple covariance inflation

min RMS error of ~2.9 ms? at
r=1.18, L=4000km

- Goes bad quickly if
inflation is set to value
larger than optimal.
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Relaxation to prior relaxation to prior

min RMS error of ~2.8 mstal |
a=0.74, L=5000km
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- Slightly lower error than
simple inflation.

e Stable over most of of
parameter space, but
goes bad quickly when a
exceeds optimal value.
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State Dependent
Multiplication inflation

min RMS error of ~2.7 ms™ at
a=0.92, L=5500km

- Lowest error (by a hair).
 Stable over the whole
parameter space.

* Large localization length
scale at minimum.
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Additive Inflation

Random samples of model error estimates added to each
ensemble member after analysis.

Here we use errors of T31 12-h forecasts initialized from

truncated T42 truth run (randomly chosen, not flow
dependent, scaled by constant b). This is a best-case
scenario — can’t do this in the real world.

— “non-evolved” (added to posterior ensemble)

— “evolved” (added to ensemble mean analysis from 12-h prior,
then integrated 12-h and added to posterior ensemble). This
conditions perturbations to dynamics, adds some flow
dependence (Hamill and Whitaker, 2010).

Pros:

— Adds some new directions to ensemble.
Cons:

— Must pre-generate a sample.

— Don’t know what to draw the sample from.



Additive Inflation ‘o non-evolved additive inflation

min RMS error of ~2.7 ms? at
b=1.5, L=4500km

25|19

* Performance 4§
comparable to S 20} 8
multiplicative inflation. 15

1.5

50 55 6.0
localization length scale (1000 km)

1'9[.5 20 25 3.0 35 40 45



Evolved Additive Inflation

min RMS error of ~2.7 ms? at
b=2.0, L=5000km

* Conditioning the
additive noise to the
dynamics helps.
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Evolved Additive Inflation o o
.o . . . evolved additive inflation + multiplicative inflation
plus Multiplication inflation 20 ' ' —N
fixed localization at 5000 km
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 Better than multiplicative
or additive inflation alone.
» Suggests additive and
multiplicative inflation are
accounting for different
error sources (model and
assimilation).

* Similar result obtained
using random 12-h model
tendencies for additive
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Time mean statistics state-dependent
multiplicative inflation (2a=0.92, L=5500km)

time mean inflation
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* Larger inflation where obs are
dense, background uncertainity
large.

» Spread too small (large) in NH
(SH).

time mean background error
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Time mean statistics for combined multiplicative and

evolved additive inflation (a=0.5, b=1.0, L=5000km)

time mean inflation

* Error reduced in observation
dense NH.

* Multiplicative inflation is
actually larger (even though
parameter a is smaller — due to
increased background spread).

L ! ! ! !
[ N w =N (9] [o)] ~ (o]

time mean background error

RN Lo A
T R e T can
_‘x;;,'-'.'.?".‘: . ,'-".: -~

ve 9.' Jer” o

e

RS - -
» 5o

oty S0 &

. ERTEAL ey, FX)
et 5 % i

A UREER ..‘,:{l_) e XREDIN
b o Eiipge. |

time mean background spread

T R ._..:.:.... o T
PATOL N SO P -
5 t.: :_i e o ""&:”&. 3 ;._,-. ks 1Y .:‘.-. 5 oo
B PO .‘J_qés AH sasernnt | e
-,.;-5‘-\: Ve @ ! v
: -':. . . L
2t 205

. .t g . .
’ O o, d . o
2 -_.': . ...:... — . 3 a . o P
. . . _
o)

<«




Conclusions

* New state-dependent multiplicative inflation
is simple to implement and works well,
especially when dynamics and/or observing
network are spatially inhomogenous.

e A combination of ‘evolved’ additive inflation
and multiplicative inflation works best.

— Multiplicative inflation handles observing network
dependent assimilation errors.

— Additive inflation handles model errors that are
independent of observing network (may be
preferable to treat this in the model
stochastically?).
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