Application of a WRF mesoscale data assimilation system to severe weather events during springs 2007-2009

4th EnDA Workshop

Dustan M. Wheatley¹, David J. Stensrud², and Nusrat Yussouf³

^{1,3}Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman Oklahoma

²NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

8 April 2010

Motivation

- Prior successes with mesoscale surface data assimilation at NSSL
 - Only standard surface observations were assimilated (e.g., see Fujita et al. 2007, Stensrud et al. 2009)
- Results can be used for:
 - Mesoscale analyses/forecasts
 - Multi-scale system

WRF Mesoscale Ensemble System

• WRF (ARW)

- Eastern two-thirds of CONUS
- 20-km horizontal grid spacing; 35 vertical levels
- Mean initial and boundary conditions from the NAM forecast cycle starting at 12Z

WRF mesoscale ensemble system (cont.)

- 30-member ensemble
 - IC/BC perturbations from WRF-Var (see Torn et al. 2006); also, soil perturbations
 - Physics diversity
 - <u>Microphysics:</u> WSM5, Thompson
 - <u>Cumulus:</u> Kain-Fritsch, Betts-Miller-Janjic, Grell-Devenyi
 - <u>Surface layer:</u> Similarity theory (MM5), Similarity theory (Eta)
 - <u>PBL:</u> YSU, MYJ, NCEP GFS
 - <u>Shortwave radiation:</u> Dudhia, Goddard

Mesoscale data assimilation

• p (land-surface altimeter), T, T_d, u, v

Oata Assimilation Research Testbed (DART)

- Ensemble Kalman filter (EnKF) approach
- See http://www.image.ucar.edu/DAReS/DART

Observation platforms...

Design of experiments

Control

Forecast (no assimilation)

• With assimilation

List of events

2007		20	08	2009		
EVENT	ТҮРЕ	EVENT	ΤΥΡΕ	EVENT	ΤΥΡΕ	
23 Mar	т	5 Feb	T, W	23 Mar	т	
21 April	т	24 April	Т	8 May	W	
23 April	т	1 May	Т	13 May	т	
4 May	т	22 May	Т	5 June	т	
5 May	т	23 May	т	11 June	W	
		29 May	Т	12 June	W	
		4 June	T,W	18 June	W	
		5 June	Т	24 June	т	
		11 June	Т			

T = Torn; W = Wind

0000 UTC 13 June 2009

 $2 \quad 4 \quad 6 \quad 8 \quad 10 \ 12 \ 14 \ 16 \ 18 \ 20 \ 22 \ 24 \ 26 \ 28 \ 30 \ 32 \ 34 \ 36 \ 38$

Associated cold pools reproduced in ensemble mean 2-m temperature

- RMS differences between the ens. mean and surface obs.
- Averaged over all the obs. locations, across all events

Improved short-term forecasts?

- SIGNIFICANT TORNADO PARAMETER
- Discriminates between significantly tornadic and nontornadic supercell environments
- CAPE/CIN
- Lifting condensation level height
- 0−1-km storm relative helicity
- \odot 0–6-km vector shear magnitude

- Tornado reports from 1800-0000 UTC
- Diagnosed quantity extracted from nearest model grid point

Include probability of precipitation (right)

5 May 2007

.5 1 1.5 2 2.5 3 3.5 4 4.5 5

.1 .2 .3 .4 .5 .6 .7 .8 .9

23 May 2008

.5	5 1	1.	.5 2	2 2	.5 3	3	3.5	4	4.5	5

EKF --- STP Mean (6-H Period)

.5 1 1.5 2 2.5 3 3.5 4 4.5 5

.5 .6 .7 .8 .9

.1 .2 .3 .4

Improved short-term forecasts?

- MCS MAINTENANCE PROBABILITY (%)
- Predicts chance that MCS will be strong and be maintained
- Maximum deep shear
- 3—8-km lapse rate
- Output Contraction Contractica Contract
- 3–12-km mean wind speed

Event #'s 12, 16, 19-20, 21 $\leftarrow \rightarrow$ Long-lived MCS events

MMP values derived from EKF more clearly delineate MCS trajectory.

.5

.6

7

.8 .9

.2

3

4

Discussion

- With DA: Potentially improved forecasts of various parameters related to severe thunderstorms and tornadoes.
- Unresolved issue (with/without DA): Low-Low-level sounding structure.
- Starting point for multi-scale data assimilation system...