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» Hybrid of two frameworks:
unlike EnKF, data assimilation
part adopts variational
framework.

» Hybrid of background error
covariances: unlike VAR,
ensemble forecasts involve in the
estimate of background error
covariance.



Why Hybrid?
“Best of both worlds”

» Studies (e.g., Wang et al. 2007b,2008ab, 2009b, Buehner et al. 2009ab) have

demonstrated that a hybrid VAR-EnKF can significantly improve upon a

standalone VAR system due to the inclusion of flow dependent ensemble

covariance in the estimate of the background error covariance.

850mb wind background (ms') 3D-Var 850mb wind increment (ms™) Ensemble DA 850mb wind increment (ms™)
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»Studies (Wang et al. 2007b, 2009b; Buehner et al. 2009ab) also showed

hybrid can improve upon a standalone EnKF due to the limited ensemble

members used by EnKF.

»Compared to EnKF, hybrid adopts model space rather than observation space
covariance localization, more appropriate for nonlocal observation operator
(e.g., satellite radiance, GPS refractivity, radar obs. with attenuation) (Campbell

et al. 2009).



Why Hybrid?
“Best of both worlds”

»Good choice for already having an established VAR and ensemble forecast
system (Wang et al. 2007ab, 2009b)

v'Minor changes to the existing operational variational framework

v'Take advantages of existing capability of VAR, e.g., variational data quality
control

v’ Static covariance model in advanced VAR can provide sophisticated method
to reduce sampling errors in ensemble covariance (e.g., anisotropic recursive
filter for adaptive covariance localization).

v'VAR framework can also easily add in dynamic constraint.

*VVAR framework provides maximum likelihood solution and thus allows non-
Gaussian errors (Zupanski 2005). Outer-loop in VAR can take care of
nonlinearity (Kalnay et al. 2009)

» Study (Caya et al. 2005) shows that for radar DA, 4DVAR spins up faster than
EnKF, but EnKF is better in later stage of the DA cycles. Hybrid can take
advantage of both. Kalnay (et al. 2009) suggested ways to adapt this
advantage of 4DVAR in EnKF.



Hurricane track forecast:
IKE, GUSTAV 2008
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‘DA system: hybrid
ETKF-3DVAR (Wang et al.
2008ab)

‘WRF Model: Ax=30km:; 35
levels

*Observations: from GTS; all
conventional in-situ data plus
cloud wind, QuikScat wind,
satellite derived temperature
profile. No vortex relocation or
bogus or position assimilation.

‘Ensemble size: 32 members

DA, forecast and verification:
»3hrly DA cycling;

»forecasts after 2-day/3-day spin up for IKE/
GUSTAV every 12h.

»Compare forecasts initialized by WRF
hybrid with WRF 3DVAR



Avg. track forecast error

Track error (km)
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initialized by analyses
generated by the hybrid with
ETKF ensemble covariance
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3DVAR

*The advantage of hybrid
relative to 3DVAR is mainly
from the flow-dependent
ensemble covariance, not
ensemble averaging.



IKE track: analysis and forecast
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» Though analyzed tracks
close, track forecast by
hybrid with ETKF
ensemble covariance is
much better than 3DVAR.
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What analyzed differently?

HYBRID (all ensemble) 3DVAR

Sea Level Pressure hPa Sea Level Pressure hPa
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* Hybrid (all ensemble) analyzed « Stronger easterly in TC environment

TC is bigger and stronger. (e.g. 500mb) by 3DVAR.



SLP Increment differences

3DVAR

22°N

» Coherent position and intensity » Asymmetric/localized
increment by hybrid increment by 3DVAR



GUSTAV track: analysis and forecast
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» Analyzed track by 3DVAR made a
wrong loop before reaching Cat 4.
3DVAR track veered to the south
before corrected by TC-specific obs.
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SLP Increment differences

HYBRID (all ensemble) 3DVAR
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» Coherent position and intensity * Double-Vortex in 3DVAR (occurred
increment by hybrid during the spurious loop)

» Asymmetric/localized increment
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Hurricane IKE 2008 radar data
assimilation experiment setup

‘Nested domains: Ax=15km (d01)/
5km(d02)

‘DA system: WRF VAR hybrid
with ensemble generated by
perturbed obs.

‘Ensemble size: 40 members

DA and forecast:

»12h ensembile initialized at 18ZSep12
»Radar DA at 06ZSep13 and no cycling

» 18h deterministic forecast from 06ZSep13
* 6h ensemble initialized at 18ZSep 12

* DA cycling started 00ZSep13 every 30 min for 3
hrs

21 hr deterministic forecast from 03Z2Sep13

*Observations: radial velocity from
two WSR88D radars (KHGX,
KLCH)



WRF Hybrid DA Init: 2008-09-12_18:00:00 WRF pure3dvar Init: 2008-09-12_18:00:00
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»Hybrid increment is around the eye of IKE, which suggested a stronger IKE
than the first guess.
*3DVAR increment is not recognizing IKE.
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»Track forecast by hybrid was better than WRF 3DVAR and
similar to GFS.

»Hybrid analyzed and predicted a stronger IKE (closer to the best
track) than both WRF 3DVAR and GFS.

» Further improvement by cycling in the hybrid (need to run
3DVAR cycling experiment).



GSI based hybrid DA for GFS

» GS| based hybrid DA is being
developed and tested using the
extended control variable method

(Wang 2010a)

* 1 ob tests (right) show ensemble
covariance is correctly ingested

* Preliminary cycling experiment where
GSl is two-way coupled with EnSRF
were conducted.

»T190/L64 resolution, operational obs

» Two-Way coupling:

*Mean of EnKF used as the background and
ensemble covariance provided by EnKF

*EnKF recentered on the analysis by the hybrid
» Preliminary set up:

*Half static, half ensemble covariance
+localization chosen for hybrid was less tight than
EnKF

svertical localization in hybrid done in model grids,
different from EnKF in scale height
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» Hybrid is
better than
GSI.

« Experiments
underway to
understand
the difference
of hybrid and
EnKF.
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Conclusion and discussion

O Hybrid VAR-EnKF has been developed and applied for various
scales assimilating various data and was demonstrated to
improve the analyses and subsequent forecasts.

O Experiments have shown that flow-dependent covariance
provided by the ensemble contributed to the better performance
by the hybrid.

0 Keep using WRF VAR and GSI based hybrid DA system
(including both 3DVAR and 4DVAR) to test the hypothesis
proposed early in the talk to understand the differences between

VAR, EnKF and their hybrid for various scales.
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Hybrid Data Assimilation Theory

®* Ensemble covariance is included in the VAR cost function
through augmentation of control variables (Lorenc 2003,
Buehner 2005, Wang et al. 2007a, 2008a, Wang 2010a).

I ,0)= ﬁlJ +B,J. +J,

= ﬁl X, B_IX1 + ,32 o' Cla+ % (y"' — Hx'jR_1 (y"' — Hx')

X =X, + Z (“k © Xk) Extra increment associated
with ensemble

B 3DVAR static covariance; R observation error covariance; K ensemble size;

C correlation matrix for ensemble covariance localization; x; kth ensemble perturbation;
x, 3DVAR increment; x total (hybrid) increment; y” innovation vector;

H linearized observation operator; 3, weighting coefficient fr static covariance;

B, weighting coefficient for ensemble covariance a extended control variable.
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Preprocessing:

= Raw data: WSR88D Level |l

= Use wind profile based on RAOB or GFS grid data to create the background

= De-aliasing using a modified version of Four-Dimensional Doppler Dealiasing
Scheme (4DD) (James and Houze, 2001).

=  Thinning: 500m in vertical and 5-10 km in horizontal



WRF ensemble

Wind spread WS'WS’ (m/s) at 850 hPa
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» Large ensemble spread at maximum wind speed gradient in the first guess

around the eye

» The ring of the ensemble spread is associated with relatively large innovation,
which suggests the spread can distinguish the first guess errors around the eye

from other places.



WRF forecast (hybrid) Init: 2008-09-13_06:00:00 WREF forecast (3dvar) Init; 2008-09-13_06:00:00
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B [v] Radar Displays

e * Precipitation forecast by
E— the hybrid revealed more
detailed structure of the
rain-band than 3DVAR.




