Ensemble Kalman Filter Assimilation of WSR-88D and CASA Radar Data for Prediction of a Tornadic Convective System

Nathan Snook, Ming Xue, and Youngsun Jung
9 April 2010
4th EnKF Workshop

Presentation Outline

- Introduction
- 9 May 2007 Case Overview
 - Timeline of events
 - Model setup
- EnSRF Data Assimilation Results
- Deterministic and Probabilistic Forecast Results
- Conclusion and questions

CASA – A Brief Introduction

CASA – A Brief Introduction

Adaptive Scanning:

- Generate priorities
 (tasks) based on
 previous scan cycle.
- Use these priorities
 to determine the
 scanning strategy
 for the next scan
 cycle.

CASA – A Brief Introduction

	CASA	WSR-88D	
Wavelength	3.19 cm (X-band)	10.0 cm (S-band)	
Maximum Peak Power	25 kW	750 kW	
Pulse Repetition Frequency	Variable up to 3.33 kHZ	0.3 – 1.3 kHZ	
3 dB Beamwidth	2.0 degrees	0.95 degrees	
Polarization	Dual linear (V and H)	Horizontal only	
Rotation Rate	Variable up to 120 deg./s	36 deg./s	
Antenna Gain	38 dB	45 dB	
Antenna Diameter	1.5 m	8.5 m	
Maximum Range	40 km	459 km	

Project Overview and Goals

- Assimilate CASA and WSR-88D radar data using the ARPS EnKF system for tornadic convective storms.
 - Examine the impact of CASA data
 - Investigate methods for improving the analysis result (e.g. mixed-microphysics ensemble)
- Develop and test probabilistic forecast methods
 - Produce probabilistic forecasts for radar reflectivity and mesoscale circulations on a 0-3 hour timescale.
 - Examine impacts of ensemble microphysics and CASA data.

Data Assimilation Tools: ARPS EnSRF

 ARPS system uses a variant of EnKF known as the ensemble square root filter (EnSRF; Whitaker and Hamill 2002).

$$\begin{pmatrix} u^{a} \\ v^{a} \\ w^{a} \\ \theta^{a} \\ \theta^{a} \\ q^{a}_{v} \\ q^{a}_{c} \\ q^{a}_{r} \\ q^{a}_{i} \\ q^{a}_{s} \\ q^{a}_{h} \end{pmatrix} \begin{pmatrix} u^{f} \\ v^{f} \\ w^{f} \\ \theta^{f} \\ q^{f}_{r} \\ q^{f}_{r} \\ q^{f}_{i} \\ q^{f}_{s} \\ q^{f}_{$$

Case Overview: 9 May 2007

- Line-end vortex (LEV) developed within a larger mesoscale convective system (MCS).
- Tornadoes associated with smaller circulations within the LEV.

9 May 2007 – Experiment Setup

- $\Delta x = \Delta y = 2 \text{ km}$
- $\Delta z_{min} = 100 \text{ m}$
- Physical domain:
 256 × 256 × 40
- \bullet $N_{ens} = 40$

9 May 2007 – Experiment Setup

- Coarse grid experiments are presented here.
- Fine grid experiments are future work (currently in the preliminary stages).

9 May 2007 – Experiment Setup

9 May 2007 2 km Study	CNTL	88D	Lin
WSR-88D radar used?	Yes	Yes	Yes
CASA radar used?	Yes	No	Yes
Ensemble size	40	40	40
Number of Lin microphysics members	16	16	40
Number of WSM-6 microphysics members	16	16	0
Number of NEM microphysics members	8	8	0

9 May 2007 Case Study: Data

Radar Name	Radar Type	
KAMA	WSR-88D	
KDYX	WSR-88D	
KLBB	WSR-88D	
KTLX	WSR-88D	
KVNX	WSR-88D	
KCYR	CASA	
KLWE	CASA	
KRSP	CASA	
KSAO	CASA	

- Data from 9 radars assimilated:
 - 5 WSR-88D
 - 4 CASA

 WSR-88D radar KFDR not used because Level II data was unavailable during the assimilation period.

- Main convective line and trailing stratiform region well represented.
- Cells in SW portion of domain too weak in the models.
- Models underestimated intensity of small individual cells ahead of the convective line.

Observed and simulated composite radar reflectivity, 02:00 UTC

- Main convective line and trailing stratiform region well represented.
- Cells in SW portion of domain too weak in the models.
- Models underestimated intensity of small individual cells ahead of the convective line.

Simulated and Observed Composite Radar Reflectivity, 02:00 UTC

- Main convective line and trailing stratiform region well represented.
- Cells in SW portion of domain too weak in the models.
- Models underestimated intensity of small individual cells ahead of the convective line.

Simulated and Observed Composite Radar Reflectivity, 02:00 UTC

- Main convective line and trailing stratiform region well represented.
- Cells in SW portion of domain too weak in the models.
- Models underestimated intensity of small individual cells ahead of the convective line.

Simulated and Observed Composite Radar Reflectivity, 02:00 UTC

Updraft is noticeably more intense when CASA data are used.

 Addition of CASA data increases low-level vorticity in both forecast and analysis.

Assimilation Period – Summary / Conclusions

- Structure of the MCS well represented after radar data assimilation using EnSRF.
- Assimilation of CASA data increased low-level vorticity in analysis and forecast at the time of observed strong nearsurface rotation.
- Inclusion of CASA data improved fit of Z analysis to 88-D observations.
- Significant under-dispersion noted in the ensemble; mixed-microphysics reduced under-dispersion in Z (not shown).

Forecast Period -- Results

Deterministic Forecasts

- Z at grid level k = 10 (≈ 2 km AGL)
- Motion of LEV and north end of system agree well with obs.
- Convective lines too weak in forecasts
- Greatest similarity between CNTL and 88D

Equitable Threat Score Analysis

Equitable Threat Score Analysis

Ensemble Forecasts

- 40 member ensemble initialized from 02:00 UTC analyses of individual ensemble members.
- Forecast verification focused on radar reflectivity
 (Z) and mesoscale circulations.
- Probabilistic calculations based on occurrence of events within the ensemble and within a fixed radius from a grid point; a method similar to that of Schwartz et al. (2009).

Ensemble Forecasts – 25 dBZ Threshold

- Highest probabilities match well with observations in placement and motion.
- As in deterministic forecasts, leading line absent and trailing line decays too quickly, with spurious convection after 04:00 UTC near the CASA domain.

Ensemble Forecasts: Tornadic Mesocyclones

Probability of significant low-level vortex at tornado location:

CNTL: 0.65 Lin: 0.35 88D: 0.43

Forecast Period – Summary / Conclusions

- Highest values of probability for radar reflectivity and mesoscale circulations matched well with observations on the 1-3 hour timescale.
- Both assimilated CASA data and a mixed-microphysics ensemble showed positive impact on probabilistic mesoscale circulation predictions.
- Greater sensitivity during forecast period to use of a mixedmicrophysics ensemble than assimilated CASA data.
 - Previous studies (e.g. Snook and Xue 2008) show great sensitivity of convective dynamics to microphysical parameters.
 - CASA IP1 domain is quite small compared to the MCS simulated.