Demonstration of radar-data assimilation and prediction for Front Range convection

Glen Romine, David Dowell, Chris Snyder

Spatial smoother 24 HR UH density

4th EnKF Workshop - 09 Apr 2010

1 HR Max UH

ti.

Project Overview

Ensemble-based data assimilation and prediction

- Test drive for Data Assimilation Research Testbed (DART) system
- Mesoscale DA on CONUS domain
- Storm-scale DA on Front Range →High Plains domain 4-17 June 2009
 - Overlaps the most interesting time/region of VORTEX2 domain in 2009
 - Complex terrain a focus of STEP program (our funding source)
- Probabilistic analyses and 6 hr forecasts from **50**-member ensembles

Surface Elevation (meters MSL)

Surface Elevation (meters MSL)

Chugwater and Denver Tornado Alleys

Significant spatial relationship between storm report locations and terrain features:

Cheyenne Ridge Palmer Divide Raton Mesa

Preparations

DART enhancements (~v.4320):

- Improved observation processing (especially MADIS stream)
- Additive noise for radar obs, low reflectivity observations, utilizing model state defined fall velocity in radial velocity forward operator
- Enhanced radar operators for ingesting fall velocity and reflectivity from the microphysics

WRF model (v3.1.1) enhancements:

- Thompson microphysics (v3.2) with reflectivity and fall velocity diagnostics
- Inline NSSL severe weather diagnostics (e.g. every time step max updraft helicity, reflectivity, surface winds, updraft, downdraft)
- Cavallo RRTM patch (corrects lw radiation problems at model top)
- HRRR-like model configuration

Datasets:

- Standard "mesoscale" observations: radiosonde, surface, aircraft, satellite track cloud winds, buoy
- WSR-88D velocity and reflectivity: KFTG, KCYS, KPUX, KDDC, KGLD, KLNX
- MADIS, NCEP reanalysis, HDSS

Radar processing:

- Using objective analysis tools built by David Dowell
- Accommodating super-res, simple clutter filter, improved mapping for meshing observations from multiple radars

System Configuration

- DART
 - 50 members, EAKF, adaptive prior inflation & localization (AL)
 - localization ~320/4 [km] H/V halfwidth, AL 1600 obs
 - Continuous cycling (3-hourly) on mesoscale
 - Configuration adapted from Ryan Torn's RTA system
- WRF
 - ESRL's HRRR-like configuration
 - Physics: KF, Thompson, Noah, Dudhia, RRTM, MYJ
 - Grids 369x297 / 301x301 x51

Initialized

12Z 31 May 4 ensemble forecasts spawned daily 4-17 June, continuous cycling

Ground Clutter: Highways

Reflectivity

Velocity

Ground-Clutter Removal: Two Approaches

- Steiner and Smith (2002)
- Clutter mask identified from multi-day radar-data statistics
 - Statistics for each elevation angle
 - Highways
 - high Z_{dB} ob availability
 - low std. dev. of Z_{dB}
 - high std. dev. of $V_{\rm r}$
 - Other ground clutter
 - high Z_{dB} ob availability
 - low std. dev. of Z_{dB}
 - low std. dev. of $V_{\rm r}$
 - $V_{\rm r}$ near o

Ground-Clutter Removal: Reflectivity

Ground-Clutter Removal: Reflectivity

Ground-Clutter Removal: Velocity

Ground-Clutter Removal: Velocity

Preliminary test case event 20090605 – radar evolution

Preliminary results from 'control' storm-scale ensemble forecast

Max. Updraft Helicity 090605_20-03Z

Updraft helicity swath ~= rotating storm tracks

Ensemble Member 01

Ensemble Member 02

Max. Updraft Helicity 090605_20-03Z 108°W 106°W 44°N

98%

42°N

40°N

38°N 40

200

150

100

90

80 70

60

50

20

(m² s⁻²)

104°W

102°W

100°W

150

100

90

50

(m² s⁻²)

Max. Updraft Helicity 090605_20-03Z

Ensemble Member 22

HRRR and NSSL WRF forecast verification

Very preliminary impressions

- Continuously cycled mesoscale background is providing an adequate convective scale IC/BC
- Good range of convective environments encapsulating the observed event in 0-4 hrs
- Excess convection (anticipated from HRRR real time performance)
- Slow spinup in control (expect improvement with radar data assimilation)

Objectives moving forward

- Demonstrate consistent short-range forecast guidance exceeding that from HRRR (best deterministic guidance, different IC)
- Smooth transition from analysis to ensemble forecast (probabilistic nowcast to convective forecast)
 - Clean spin up/down
 - e.g. fit to radial velocity observations o-30 minutes
- Develop novel probabilistic guidance (potential application to severe weather watches)
 - November workshop
 - Focused collaboration with NOAA ESRL and NSSL