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COVarlanCC lnﬂathIl (e.g., Houtekamer and Mitchell 1998)

Empirical treatment for...
* freating covariance underestimation

Error covariance 1s underestimated due to

various sources of imperfections:
* limited ensemble size

 nonlinearity
* model errors
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Ditficulties of inflation

Fixed covariance inflation has difficulties such as...

e ensemble spread exaggerates observing density pattern
* should depend on (X, y, z, t); tuning 1s very difficult

Temperature spread of JMA's global LETKF
w/ fixed multiplicative inflation

~500 hPa ~50 hPa

Level:15 Variable:T Member ASP Date:2004/08/01/12UTC

adapted from Miyoshi et al. (2010)



Additive inflation

e introduces new directions to span the error space
* solves the problem of the spread pattern
* has difficulties in obtaining reasonable additive noise

Temperature spread of JMA's global LETKF
w/ additive inflation

~500 hPa ~50 hPa

Level:15 Variable:T Member ASP Date 2004/08/01/12UTC Level:31 Variable:T Member ASP Date 2004/08/01/12UTC

adapted from Miyoshi et al. (2010)



Adaptive inflation

Anderson (2007; 2009) developed an adaptive inflation algorithm
using a hierarchical Bayesian approach.

We follow Li et al. (2009) and use the statistical relationship derived
by Desroziers et al. (2005):

dif =Hx'—HX = HdX = HKd
<d dy > HP H'"(HPH" +R)‘1<d dy >

X .
<d§d§T>=HPfHT using <d,§’d§T>=HPfHT+ R

In the EnKF, P’/ < poP/ Thisis important!!
T
ie., <d£’dzf >=H(pon)HT -
tr<dg’dbo >

We estimate the inflation parameter:| & =
P (H(poP )H™)




LETKF alg()rithm (Hunt et al. 2007)

Local Ensemble Transform Kalman F ilter
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Adaptive inflation 1n the LETKF

oo o e o Analysis of the i-th variable:

O
x{ =x/1,, +6x/T,(0Y/ ,R,.d,)
(N xXm) (NXm) (mXm)
R, < ﬁi_l oR,

R-localization, Hunt et al. (2007)

When computing T,, we compute the following statistics simultaneously:

| (dzd;” )t o R )|
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Normalization factor

3-dimensional field of inflation
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Time smoothing

Due to the limited sample size in the local region at a single time step,
it 1s essential to apply time smoothing to include more samples in time.

We use the Kalman filter approach.

— O-ozal‘—l + 0-13060

o
o’+0,

!

a tuning parameter that determines
the strength of time smoothing

For example, 0, =0.002

1
O, =—F 1.e., more samples, more reliable
0 L. ’ .
VP

p denotes the number of observations (1.e., sample size)

For example, when p =100, o, = 0.1



Further consideration
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If only “far” observations exist in a local
region, the statistics would be less reliable.

~ad_--

Considering the maximum localization weight of the local

observations, we further modify the uncertainty of the estimated
inflation value:

1
o =

O_ﬁmax\/;
Qo

Localization weighting function for the closest observation



Results with the Lorenz 96 model
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Results with the SPEEDY model

ADAPTIVE INFLATION at Z=1
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Time series of adaptive inflation
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0, = 0.002 gives stable performance



Averages of the final 1 mo. of 4-mo. experiments

RELATVE IMPROVEMENTS (U) BY ADAPTIVE INFL

ADAPTVE INFLATION

- ~20% reduction ;
of RMSE |

SIG LEVEL
z b

] e ] Re BH

=55 =04 =03 =02 =1 Q o1 o2 O O o5 1 1.1

SPREAD-RMSE M20L50G1040

12 = T
SPREAD-RUSE M20LSOGADPCI

.| adaptive inflation

Improved spread




Regular obs network

OBSERVATION STATIONS (NOBS=448)
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With regular obs network
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Conclusion

* The proposed adaptive inflation method was
tested with the Lorenz-96 and SPEEDY models

— stable performance
— 1mproved analysis accuracy/ensemble spread

* Significant sensitivity with the choice of O,



Future work

* Application to other systems
— Realistic NWP models
— Ocean models
— Martian atmosphere models

e Assimilation of real observations

— Model errors

— Temporally varying observing network
* (e.g., aircraft, satellites)



