Ensemble Sensitivity Analysis Applied to the Genesis of Typhoon Nuri (2008)

Rahul Mahajan & Greg Hakim University of Washington, Seattle

Outline

- Motivation
- Ensemble Sensitivity
- Typhoon Nuri (2008)

- Experimental Design
- Sensitivity Results
- Summary

Fourth Workshop on Ensemble Kalman Filter and Data Assimilation Albany, NY 7-9 April 2010

Motivation and Goal

- Key issues regarding Tropical Cyclones:
 - Dynamical understanding
 - Genesis and Structure
 - Predictability
 - Track and Intensity
- Apply ensemble sensitivity analysis to identify relationships between dynamical processes that control genesis
- Test hypothesis based on sensitivities, modify initial conditions to speed-up or stop genesis

Sensitivity Analysis

• relates change to an input (*state*: x) to changes in the output (*metric*: J)

$$\begin{split} \delta \mathbf{x}_{t} &= \mathbf{M} \delta \mathbf{x}_{o} = \mathbf{M}_{t} \cdots \mathbf{M}_{o} \delta \mathbf{x}_{o} \\ \delta J &\doteq \begin{bmatrix} \frac{\partial J}{\partial \mathbf{x}_{t}} \end{bmatrix}^{T} \delta \mathbf{x}_{t} \end{split} \qquad \begin{cases} \delta J &= \begin{bmatrix} \mathbf{M}^{T} \frac{\partial J}{\partial \mathbf{x}_{t}} \end{bmatrix}^{T} \delta \mathbf{x}_{o} \\ \hline \frac{\partial J}{\partial \mathbf{x}_{o}} &= \mathbf{M}^{T} \frac{\partial J}{\partial \mathbf{x}_{t}} = \mathbf{M}_{o}^{T} \cdots \mathbf{M}_{t}^{T} \frac{\partial J}{\partial \mathbf{x}_{t}} \\ \text{adjoint sensitivity to IC} \\ \text{adjoint or transpose of TLM} \end{split}$$

Sensitivity Analysis

- adjoint approach is deterministic
- consider δJ and $\delta \mathbf{x}$ as random variables

$$\delta J = \begin{bmatrix} \frac{\partial J}{\partial \mathbf{x}_o} \end{bmatrix}^T \delta \mathbf{x}_o$$
$$\left\langle \delta J \delta \mathbf{x}_o^T = \begin{bmatrix} \frac{\partial J}{\partial \mathbf{x}_o} \end{bmatrix}^T \delta \mathbf{x}_o \delta \mathbf{x}_o^T \right\rangle$$
$$cov(\delta J, \delta \mathbf{x}_o) = \begin{bmatrix} \frac{\partial J}{\partial \mathbf{x}_o} \end{bmatrix}^T \mathbf{A}$$
$$\begin{bmatrix} \frac{\partial J}{\partial \mathbf{x}_o} \end{bmatrix}^T = cov(\delta J, \delta \mathbf{x}_o) \mathbf{A}^{-1}$$

Ensemble Sensitivity

• compute sensitivity from ensemble output

$$\delta J \approx \frac{\partial J}{\partial x_j} \cdot \sigma_{\mathbf{X}_j} \approx \frac{cov(\mathbf{J}, \mathbf{X}_j)}{var(\mathbf{X}_j)} \cdot \sigma_{\mathbf{X}_j}$$

- linear regression
 - dependent variable is forecast metric
 - independent variable is element of state vector
- can apply confidence testing using ensemble statistics
- no adjoint or tangent linear model required
- no assumptions about on/off or moist processes
- can evaluate rapidly for any J

Genesis -24 hrs 1230Z 16 August 2008

Genesis -12 hrs 0030Z 17 August 2008

Genesis 1230Z 17 August 2008

Experiment Setup

- Model
 - Weather Research and Forecasting (WRF V3.1)
 - 27km horizontal resolution domain over west Pacific
 - 38 vertical levels, 10 hPa model top
- Data Assimilation
 - Ensemble Square Root Filter
 - 90 ensemble members
 - Covariance Relaxation, Gaspari-Cohn localization
 - assimilate observations every 6 hrs
 - Conventional observations:
 - rawinsondes, ACARS, surface stations, buoys, ships, cloud track winds
 - Field observations from T-PARC / TCS08:
 - dropsondes and flight level data

Procedure

- Cycle EnKF from pre-depression to maximum intensity of typhoon Nuri
- Generate ensemble forecast out to 24 hours from pre-depression to tropical storm strength (16/12Z - 17/12Z)
- Compute sensitivity of metrics at forecast time to analysis state at initialization time

Nuri analysis 16/12 (00hr forecast)

Nuri 12hr forecast

Nuri 24hr forecast

Sensitivity Results

Sensitivity to 850 hPa height analysis

Sensitivity to 925-700 vapor analysis

Sensitivity to 700-500 vapor analysis

Sensitivity to 500-300 vapor analysis

Initial Condition Perturbations

- Test statistical predictions with model response
- Perturb initial state via ∂x^a

$$\mathbf{X}_{j}^{p} = \mathbf{X}_{j}^{a} + \frac{\partial x_{j}}{\partial J} \cdot \alpha$$

∂x_j^a	—	$cov(\mathbf{X}_{j}^{a},\mathbf{J})$
∂J		$var(\mathbf{J})$

- independent variable is the forecast metric
- dependent variable is the analysis
- apply for a range of scales (α)
- Run full non-linear model w/ perturbed IC's, recompute δJ

Perturbed Initial Conditions (850 hPa Z)

Perturbed Initial Conditions (vapor)

Perturbed Forecasts, 850 hPa vorticity

Perturbed Forecasts, moisture

Summary

- Applied ensemble sensitivity analysis to explore tropical cyclogenesis of typhoon Nuri
- Genesis sensitivity associated with
 - initial intensity and downstream ridge
 - moisture near trough and along boundary
- Modified initial conditions with perturbations:
 - small: model response comparable to ensemble predictions
 - large: model response less than the ensemble predictions suggesting non-linear interaction
 - experiments suggest significant contribution from moisture at low levels
- Iterate over different choices of forecast metrics and analysis state variables and increased resolution