Radiance Data Assimilation with an EnKF

Zhiquan Liu, Craig Schwartz, Xiangyu Huang (NCAR/MMM)

Yongsheng Chen (York University)

Outline

- Radiance Assimilation Methodology
- Apply to Typhoon Morakot (2009)
- Summary and future work

EnKF Analysis Equation

• Kalman filter equations

$$\mathbf{x}^{a} = \mathbf{x}^{f} + \mathbf{K}[y^{o} - H(\mathbf{x}^{f})]$$
$$\mathbf{K} = \mathbf{P}^{f}\mathbf{H}^{T}(\mathbf{H}\mathbf{P}^{f}\mathbf{H}^{T} + \mathbf{R})^{-1}$$

Use ensemble of model forecasts to compute sample covariances

$$\mathbf{P}^{f}\mathbf{H}^{T} = \operatorname{cov}(\mathbf{x}^{f}, \mathbf{H}\mathbf{x}^{f}) = \frac{1}{N-1} \sum_{k=1}^{N} (\mathbf{x}_{k}^{f} - \overline{\mathbf{x}^{f}}) [H(\mathbf{x}_{k}^{f}) - \overline{H(\mathbf{x}_{k}^{f})}]$$

$$\mathbf{H}\mathbf{P}^{f}\mathbf{H}^{T} = \operatorname{cov}(\mathbf{H}\mathbf{x}^{f}, \mathbf{H}\mathbf{x}^{f}) = \frac{1}{N-1} \sum_{k=1}^{N} [H(\mathbf{x}_{k}^{f}) - \overline{H(\mathbf{x}_{k}^{f})}] [H(\mathbf{x}_{k}^{f}) - \overline{H(\mathbf{x}_{k}^{f})}]$$

$$\mathbf{D}_{k} = \mathbf{D}_{k} =$$

Practical Implementation

- Make use of observation operators built in the WRFDA-3DVAR.
 - Obs. prior is calculated/QCed/output from WRFDA-3DVAR
 - For both conventional observations and radiances
- Convert 3DVAR output files into the modified DART obs_seq files.
- Modify DART to directly use obs prior calculated from 3DVAR
 - DART built-in observation operators are only applied after analysis (step for diagnosing obs. posterior)
- For radiances, also output Jacobian from CRTM in addition to obs prior.
 - For vertical localization

Vertical Localization

Take the height of peak levels of Jacobian as vertical coordinate

Use DART built-in vertical localization

Single Observation in the Ensemble

With vertical localization

4th EnKF Workshop

Bias Correction and QC

Bias correction coefficients from the end of 3DVAR experiment. Use Ensemble Mean as reference for BC and QC.

Typhoon Morakot

CWB Computational Domains

- Version 3.1.1 of WRF-ARW
- 45 vertical levels, model top of 30 hPa
- No cumulus parameterization in d03

4 Experiments

- 1) WRFDA-3DVAR: with conventional obs and radiances (AMSU-A/B, MHS), 6-hr full-cycling, with DA in d01 only (2009, 080318~080800)
- 2) Same as experiment 1, but with DA in d01 and d02
- 3) 64-member ensemble, 6-hr full-cycling, assimilated conventional observations in d01 *only*. Ensemble LBCs (and ICs for the 1st cycle) were generated using 3DVAR "randomcv" capability.
- 4) Same as experiment 3, but assimilated radiances in addition to conventional observations

*No cyclone relocation or bogus obs used during analyses

*Observation window: analysis time ±3 hrs

*A 72-hour WRF forecast was made every six hours (00/06/12/18Z) from 3DVAR analyses and ensemble mean of DART experiments.

Radiance Distribution

Sounding Distribution

Prior Spread: U

Posterior Spread: Sfc Pressure

Averaged from 1800 UTC 03 Aug to 0000 UTC 08 Aug

Average Track Error

•Averaged from 1800 UTC 03 Aug to 0000 UTC 08 Aug

Average Min SLP Error

•Averaged from 1800 UTC 03 Aug to 0000 UTC 08 Aug

Average Max Wind Speed Error

•Averaged from 1800 UTC 03 Aug to 0000 UTC 08 Aug

A Sample Forecast

3DVAR exps. stronger

EnKF exps. Weaker

4th EnKF Workshop

24 hr forecast initialized 2009080600 valid 2009080700

36 hr forecast initialized 2009080600 valid 2009080712

4th EnKF Workshop

Summary

- EnKF-based radiance DA was implemented through the coupling with WRFDA's RTM, bias correction and QC scheme.
- For Typhoon Morakot, EnKF apparently produces better track and intensity forecasts than 3DVAR for "medium-range (I.e., beyond 36h~48h)".
- EnKF with radiances improves intensity forecast when comparing to assimilating GTS obs only.
- 3DVAR DA in both D01 and D02 adds additional value than DA in D01 only.
- Cycling DA without hurricane relocation leads to large track error.

Future work

- Precip. Verification
- Ensemble DA in both D01 and D02
- Revise radiance vertical localization
 Make use of full Jacobian profile
- Better constrain analysis track
 - Relocation, bogus DA or track DA.