Hybrid variational-ensemble data assimilation at NCEP

Daryl T. Kleist
NOAA/NCEP/EMC & University of Maryland-College Park

Dave Parrish¹, Jeff Whitaker², & Xuguang Wang³

With thanks to EMC DA team, John Derber, Steve Lord & Kayo Ide

¹NOAA/NCEP/EMC, ²NOAA/ESRL, ³University of Oklahoma

4th EnKF Workshop, 7-9 April 2010
Motivation

• Current background error covariance (applied operationally at NCEP) in VAR sub-optimal
 – Isotropic recursive filters
 – Poor handle on cross-variable covariance
 – Minimal flow-dependence added
 • Implicit flow-dependence through linearization in normal mode constraint (Kleist et al. 2009)
 • Flow-dependent variances (only for wind, temperature, and pressure) based on background tendencies
 – Tuned NMC-based estimate
• Although flow-dependent variances are used, confined to be a rescaling of fixed estimate based on time tendencies
 – No cross-variable or length scale information used
 – Does not necessarily capture ‘errors of the day’

• Plots valid 00 UTC 12 September 2008
NOAA EnKF*

- Serial EnSRF (Whitaker and Hamill 2002; Anderson 2003)
 - Options exist for perturbed observations and LETKF formulations
- NCEP GSI for forward operator
 - Ability to assimilate full suite of operationally available observations
- Gaspari-Cohn type localization
- Adaptive radiance bias correction (Miyoshi)
- Can apply multiplicative and/or additive (‘NMC’ perturbations) inflation

*Acknowledgement: Jeff Whitaker for code access and guidance
EnKF Experiments

• T190 L64 with GFS
 – 60 ensemble members
 – Multiplicative and additive inflation
 – Assimilate full suite of observations, including in-situ, GPSRO, radiances (AMSU, AIRS, etc.), TC minimum SLP (NHC/JTWC estimate)

• Evaluate
 – Deterministic GFS forecasts from EnKF ensemble mean analysis (two options)
 • **Interpolate low resolution mean directly to T382L64**
 – Results that follow used this method
 • Maintain high-resolution “control” for replacement of ensemble mean (so-called dual-resolution)
 – Ensemble forecasts (GEFS) from 20 members of 60 member ensemble (interpolated to T190L28)*

Mozheng Wei & Jeff Whitaker carrying out GEFS evaluation
EnKF-GFS Verification

AC: P500 HGT NH 00Z, 20090810-20090922

Difference w.r.t. GSI
AC differences outside of bars are significant at 95% confidence

Forecast Hour
EnKF-GFS Verification

RMSE: 20080810–20080922 Mean for WIND G2/TRO 00Z

AC: U250 TROPICS 00Z, 20080810–20080922

Difference w.r.t. GSI

AC differences outside of bars are significant at 95% confidence

Forecast Hour
EnKF Summary

• EnKF-GFS (deterministic)
 – Competitive with GSI despite lower resolution, but…
 • Best performance obtained when utilizing offline satellite bias correction coefficients from operational 3DVAR
 – Investigation on-going, but perhaps irrelevant as we pursue hybrid var/ens DA
 • Experiment utilized data QC’ed by operational (3DVAR based) 06hr forecasts
 • No tropical cyclone relocation
 – Improve TC track forecasts despite this!

• EnKF-GEFS (ensemble)
 – Evaluation on-going, but preliminary results suggest EnKF competitive with ETR based GEFS

• NCEP pursuing hybrid approach in effort to capture benefits of ensemble within existing VAR framework
Hybrid var-ens

- Incorporate ensemble perturbations directly into variational cost function through extended control variable
 - Lorenc (2003), Buehner (2005), Wang et. al. (2007), etc.

\[J(x'_f, \alpha) = \beta_f \frac{1}{2} (x'_f)^T B^{-1}(x'_f) + \beta_e \frac{1}{2} (\alpha)^T A^{-1}(\alpha) + \frac{1}{2} (y'_o - Hx'_t)^T R^{-1}(y'_o - Hx'_t) \]

\[x'_t = x'_f + \sum_{k=1}^{K} (\alpha_k \circ x^e_k) \]

\[\frac{1}{\beta_f} + \frac{1}{\beta_e} = 1 \]

- \(\beta_f \) & \(\beta_e \): weighting coefficients for fixed and ensemble covariance respectively
- \(x'_t \): (total increment) sum of increment from fixed/static \(B(x_f) \) and ensemble \(B \)
- \(\alpha_k \): extended control variable; \(x^e_k \):ensemble perturbation
- \(A \): correlation matrix [localization on ensemble perturbations]

Following notation similar to Wang et al. (2007, 2008), Wang (2010)
Hybrid with GSI

- Control variable has been implemented into GSI 3DVAR*
 - Full B preconditioning
 - Working on extensions to $B^{1/2}$ preconditioned minimization options
 - Spectral filter for horizontal part of A
 - Eventually replace with (anisotropic) recursive filters
 - Recursive filter used for vertical
 - Dual resolution capability
 - Ensemble can be from different horizontal resolution than background/analysis (but same vertical levels)
 - Can use GFS-based or internally generated ensemble
 - Working on building I/O for other models, regional, etc.
 - Option to apply TLNMC (Kleist et al. 2009) to analysis increment

\[x' = C \left[x'_f + \sum_{k=1}^{K} (\alpha_k \circ x'_k) \right] \]

*Acknowledgement: Thanks to Dave Parrish who implemented the extended control variable
Single Observation

Single ps observation (-2mb O-F, 1mb error) near center of Hurricane Ike
Single Observation

Single 850mb zonal wind observation (3 m/s O-F, 1m/s error) in Hurricane Ike circulation
Single Observation

Single 850mb Tv observation (1K O-F, 1K error)
Hybrid Cycling Experiments

- Full resolution cycling experiment
 - T382L64 deterministic analysis and forecasts
- Same period as EnKF runs (2008 Hurricane Season)
 - Re-ran control run utilizing latest versions of GSI/GFS
- “One-way coupled”
 - T190L64 perturbations from offline EnKF run used for B estimate
 [no feedback to ensemble system]
- Localization scales for alpha set similar to EnKF run
 - Not exact since current localization implementation for hybrid differs from EnKF
- $(\beta_1)^{-1} = 0.5$; TLNMC utilized
 - conservative parameter settings
 - Provide baseline, test mechanics, and find potential issues
Preliminary Results

Fits of 06h forecasts to radiosondes (O-F, wind) for 20080815-20080915

Hybrid fits are better than control 3DVAR and EnKF.

EnKF fits are for high-resolution deterministic forecast (not ensemble mean). Suffering from spin-up/resolution issues?
Preliminary Results

fits of 06h forecasts to radiosondes (O-F, temperature) for 20080815-20080915

Hybrid fits are slightly better in lower troposphere, but worse in upper troposphere & stratosphere.

EnKF fits are for high-resolution deterministic forecast (not ensemble mean).
Preliminary Results
Preliminary Results

CONUS Precip Skill Scores, f36–f60, 10aug2008–21sep2008

Differences outside of the hollow bars are 95% significant based on 10000 Monte Carlo Tests
Preliminary Results

Hybrid & EnKF improve track errors from f12-f72, slightly degrade at day 4/5.

Hybrid substantially improves intensity errors. EnKF intensity forecasts suffer from degraded analysis resolution.
Current & Future Work

• EnKF / Hybrid show substantial promise
• Large collaborative effort underway to sort out best path forward for NCEP
 – EMC (myself, ensemble team, DA team), NOAA/ESRL (Jeff Whitaker), OU (Xuguang Wang)
• Many open questions
 – Ensemble Forecasting
 • EnKF/ETR
 – Hybrid DA
 • Localization (adaptive, flow-dependent, anisotropic), balance, weighting term for \mathbf{B} (adaptive), many more….
 – Coupling data assimilation and ensemble forecasting systems