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Outline

• Bred Vectors and Singular Vectors
• Dependence of initial SVs on the norm
• No-cost smoother
• Applications: Outer Loop and “Running in Place”
• Analysis increments at the end of the assimilation

window: both 4D-Var and LETKF increments look
like BVs.

• Analysis increments at the beginning of the
assimilation window: LETKF look like BVs, 4D-Var
look like SVs.



Lorenz (1965) introduced (without using their current
names) all the concepts of: Tangent linear model,
Adjoint model, Singular vectors, and Lyapunov
vectors for a low order atmospheric model, and their
consequences for ensemble forecasting.

He also introduced the concept of “errors of the day”:
predictability is not constant: It depends on the
stability of the evolving atmospheric flow (the basic
trajectory or reference state).



When there is an instability, all perturbations converge
towards the fastest growing perturbation (leading

Lyapunov Vector). The LLV is computed applying the
linear tangent model L on each perturbation of the

nonlinear trajectory
 
Fig. 6.7: Schematic of how all perturbations will converge 
towards the leading Local Lyapunov Vector 
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dyn+1=Ldyn



Bred Vectors: nonlinear generalizations ofBred Vectors: nonlinear generalizations of
Lyapunov Lyapunov vectors, finite amplitude, finite timevectors, finite amplitude, finite time

 
Fig. 6.7: Schematic of how all perturbations will converge 
towards the leading Local Lyapunov Vector 
 
 
 
 
 

trajectory 

random initial 
perturbations 

leading local 
Lyapunov vector 

 
 

Breeding: integrate
the model twice,
rescale the
differences
periodically and add
them to the control.

xn+1=M(xn) 



Apply the linear and the adjoint models

So that vi are the eigenvectors
of             and           are the
eigenvalues

! i
2LTLv i = ! iL

Tui = ! i
2v i LTL



More generally,
yn+1 = Lyn

Find the final size with a final norm P:

yn+1
2 = (Pyn+1)

T (Pyn+1) = yn
TLTPTPLyn

This is subject to the constraint that all the initial
perturbations are of size 1 (with some norm W that
measures the initial size):

yn
TWTWyn = 1

A perturbation is advanced from tn to tn+1

The initial leading SVs depend strongly on the initial
norm W and on the optimization period T = tn+1-tn



QG model: Singular vectors using either enstrophy (left)
or streamfunction (right) initial norms (12hr)

Initial SVs are
very sensitive
to the norm

Final SVs look
like bred vectors
(or Lyapunov
vectors)

Initial SV with enstrophy norm Initial SV with streamfunction norm

Final SV with enstrophy norm Final SV with streamfunction norm

(Shu-Chih Yang)



Two initial and final SV (24hr, vorticity2 norm)
contours: 3D-Var forecast errors, colors: SVs

With an enstrophy norm, the initial SVs have large scales,
by the end of the”optimization” interval, the final SVs look
like BVs (and LVs)



Two initial and final BV (24hr)
contours: 3D-Var forecast errors, colors: BVs

The BV (colors) have shapes similar to the forecast
errors (contours)



Tangent linear model, forward in time

In the adjoint model the above line becomes

                                                                                    

                                                                            backward in time

Example of nonlinear, tangent linear and adjoint codes:

!x 3(t + "t) = !x3(t) + [x2 (t)!x 1(t) + x1(t)!x2 (t) # b!x3(t)]"t

!x3
*(t) = !x3

*(t) + (1" b#t)!x3
*(t + #t)

!x2
*(t) = !x2

*(t) + (x1(t)#t)!x3
*(t + #t)

!x1
*(t) = !x1

*(t) + (x2 (t)#t)!x3
*(t + #t)

!x3
*(t + #t) = 0

Nonlinear model, forward in time

x 3(t + !t) = x3(t) + [x1(t)x 2 (t) " bx3(t)]!t

Lorenz (1963) third equation:  !x3 = x1x 2!bx3

M

L

LT



4D-Var is a smoother

J(x(t0))=   [x(t0)-xb(t0)]
TB0

-1[x(t0)-xb(t0)]+      [yo
i-H(xi)]

TRi
-1[yo

i-H(xi)]

 

1
2

 

1
2 i= 0

i=N

!

Find the initial condition
such that its forecast best
fits the observations within
the assimilation interval

previous forecast

xb

assimilation window
t0 tnti
yo

yo

yo


yo

corrected forecast
xa

The form of the cost function suggests that the analysis
increments in 4D-Var will be dominated by leading SVs.



4D-Var is a smoother4D-Var is a smoother

What about LETKF, a sequential method?

previous forecast

xb

assimilation window
t0 tnti
yo

yo

yo


yo

corrected forecast
xa

The corrected forecast
is the 4D-Var analysis
throughout the
assimilation window



Local Ensemble Transform Kalman Filter
(Ott et al, 2004, Hunt et al, 2004, 2007)

(a square root filter)

• Model independent
(black box)
• Obs. assimilated
simultaneously at each
grid point
• Parallel analysis: each
grid point is independent
• 4D LETKF extension

(Start with initial ensemble)

LETKFObservation
operator

Model

ensemble  analyses

ensemble forecasts

ensemble
“observations”

Observations

Xa = XbT The transform matrix is a matrix of weights.
These weights multiply the forecasts.



Local Ensemble Transform Kalman Filter (Local Ensemble Transform Kalman Filter (LETKFLETKF))

Forecast step:
Analysis step: construct

Locally: Choose for each grid point the observations to be used, and
compute the local analysis error covariance and perturbations in
ensemble space:

Analysis mean in ensemble space:
and add to     to get the analysis ensemble in ensemble space.

The new ensemble analyses in model space are the columns of
                 . Gathering the grid point analyses forms the new

global analyses. Note that the the output of the LETKF are analysis
weights         and perturbation analysis matrices of weights        . These
weights multiply the ensemble forecasts.

   
xn,k

b = Mn xn!1,k
a( )

Xb = x1
b ! xb | ... | xK

b ! xb"# $%;

yi
b = H (xi

b ); Yn
b = y1

b ! yb | ... | yK
b ! yb"# $%

 
!Pa = K !1( )I + YbTR!1Yb"# $%

!1
;Wa = [(K !1) !Pa ]1/2

Xn
a = Xn

bWa + xb

    w
a = !PaYbT R!1(yo ! yb )

Wa

Globally:

  w
a Wa



Why? A linear combination of model trajectories is also a
trajectory. If the trajectory is close to the truth at the end of the
window, it should be close to the truth throughout the window.

Therefore the weights are valid throughout the assimilation
window!

No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn.



No-cost LETKF smoother
tested on a QG model: it works…

“Smoother” reanalysis

LETKF Analysisxn
a = xn

f + Xn
fwn

a
LETKF analysis 

at time n

Smoother analysis 
at time n-1  !xn!1

a = xn!1
f + Xn!1

f wn
a

This very simple smoother allows us to go back
and forth in time within an assimilation window:
it allows assimilation of future data in reanalysis



No-cost LETKF smoother (   ): apply at tn-1 the same
weights found optimal at tn. It works for 3D- or 4D-LETKF

The no-cost smoother makes possible:
 Outer loop (like in 4D-Var)
 “Running in place” (faster spin-up)
 Use of future data in reanalysis
 Ability to use longer windows: dealing with nonlinearity/non-Gaussianity



Nonlinearities,Nonlinearities,  ““Outer LoopOuter Loop”” and  and ““Running in PlaceRunning in Place””

Lorenz -3 variable model RMS analysis error
4D-Var   LETKF LETKF LETKF

        +outer loop       +RIP
Window=8 steps 0.31     0.30 0.27  0.27
Window=25 steps 0.53     0.66 0.48  0.39

Outer loop: similar to 4D-Var: use the final weights to correct
only the mean initial analysis, keeping the initial perturbations.
Repeat the analysis once or twice. It re-centers the ensemble
on a more accurate nonlinear solution. (Yang and Kalnay, MWR,
2010)
“Running in place”: like the outer loop but smoothing both the
analysis and the analysis error covariance and iterating a few
times. Accelerates the EnKF spin-up even w/o a priori
information. (Kalnay and Yang, QJRMS 2010).



Comparison of 3D-Var,
4D-Var and LETKF

 

4D-Var, 12hr window
LETKF, 12hr window
4D-Var, 24hr window

3D-Var, 12hr window

With the outer loop LETKF can also benefit from a longer window



 

LETKF

4D-Var-12hr

4D-Var is a smoother: we know the initial corrections.
We can use the “no-cost” LETKF smoother to get the “initial”
EnKF corrections.

At the end of the assimilation window, the 4D-Var and LETKF
corrections are clearly very similar.

What about at the beginning of the assimilation window?



Initial and final analysis corrections
(colors), with one BV (contours)

LETKF

4D-Var-12hr

Initial increments

Initial increments

Final increments

Final increments

LETKF

4D-Var-12hr



Summary
• Initial Singular Vectors depend strongly on the norm. Bred

Vectors, like leading Lyapunov vectors are norm-
independent.

• Forecast errors look like BVs~LVs.
• 4D-Var is a smoother: it provides an analysis throughout the

assimilation window.
• We can define a “No-cost” smoother for the LETKF.
• Applications: Outer Loop and “Running in Place”, Reanalysis.
• Analysis corrections in 4D-Var and LETKF are very similar at

the end of the assimilation window, but very different at the
beginning of the assimilation window.

• Analysis corrections at the beginning of the assimilation
window look like bred vectors for the LETKF and like norm-
dependent leading singular vectors for 4D-Var.
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