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Questions

Can hurricane ensemble forecasts from a global model

be improved substantially by:

— using an EnKF for data assimilation & ensemble
initialization?

— using a higher-resolution version of global model?

— using new “TCVitals” sea-level pressure observations in the
data assimilation?

How much of any improvement can be attributed to
EnKF vs. higher resolution model vs. new obs?

How do experimental forecasts compare with
operational forecasts from worldwide centers?

Multi-model ensembles provide improvement?



Testing performed

Ran a global ensemble square-root filter (“EnKF”) data assimilation
— T382L64 (~40 km) version of NCEP GFS, 60 members

— Full observational data stream + “TCVitals” (min central
pressure)

— 20-member ensemble forecasts to 7 days for most active days
during hurricane season, late July to early October 2009.

Other operational ensembles (next page)

Also useful: deterministic forecasts from T382 GFS/EnKF,
operational GFS/GSI and parallel GFS/GSI with TCVitals

Compare against “best track” files compiled by NHC and Joint
Typhoon Warning Center



Ensemble systems evaluated

T382L64 “GFS/EnKF” (experimental)
30-km NOAA “FIM” off GFS/EnKF IC’s (experimental)

T126L28 GFS/GSI/ETR (operational “NCEP”)

“CMC” ensemble, 0.9-degree, L28, EnKF perts around 4D-Var
control.

“UKMO” MOGREPS ensemble, 1.25*0.83-degree, L38, ETKF perts
around 4D-Var control

“ECMWF” T399L62, v. 35r2 and 35r3 (with stochastic physics
upgrade). Singular vector perts around 4D-Var control

for diagnostic purposes, “T126L28 GFS/EnKF” initialized off T382L64
EnKF ICs



What we don’t have, and wish we did

* T382L64 GFS/EnKF and subsequent
ensembles, without TCVitals observations

 T126L28 GFS/EnKF and subsequent ensembles
(or T190L64) to examine effect of resolution

* A bigger sample (lackluster Atlantic season,
only global-composite statistics likely to be
worth interpreting).



Rules for including a particular storm
in “homogeneous” comparisons of
models A vs. B

Storm must be tracked and at least tropical depression
strength at initial time of forecast

Ensemble scores computed only when at least 20 members’
forecasts computed.

At least 8 members must be tracking the storm to compute
statistics; mean error and spread computed from sample of
storms tracked.

When performing “homogeneous” comparison of forecast
model A to forecast model B, count a storm as a sample only
when both models have forecast available.



Definitions & metrics

Absolute error (km) of ens.-mean track forecast for the ith of
m samples E;(¢)

Abs. difference of the jth of n members from the ens mean: D,

Track average error: ()= ;E’m
m n
Spread for it sample .........c.c......... S ()= = |
n
Average spread : DS,
S(r)=+1—o



Review of Atlantic Basin activity

Atlantic Basin Storms, 31 Jul 2009 to 03 Oct 2009
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Review of Western-Pacific activity

Wes’rern Pacific Storms, 31 Jul 2009 ’ro 03 Oct 2009
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Initialized 00 UTC
5 August 2009.

* indicates observed best-
track position.

Bi-variate normal distribution
fit to ensemble member
positions; contour encloses
90% of fitted probability.

GEFS/EnKF a bit north and
too fast.

NCEP has northward &
westward bias, few members
track.

ECMWEF tracks decent up to
Taiwan landfall

CMC has very large spread,
esp. after landfall.

UKMO too north,
too fast.
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Example:
Hurricane
Jimena

Initialized 00 UTC 30 Aug 2009

all models have westward
bias; none of the forecasts
particularly good.
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Example:
Hurricane Bill

Initialized 00 UTC 19 August 20009.

All models slow, to varying extents.

GEFS/EnKF and ECMWEF tracks
decent.

UKMO, CMC have westward bias.

NCEP, FIM decent.

SON T,

30N |

30N |

50N [

30N |

40N |

40N |

40N |

(a) GFS/EnKF

(b) NCEP

1] T — ST

40N |

30N |

(c) ECMWF

P TS f ey e

40N |

30N |

80w 70W 60W 50w

50N
40N |

30N |




(q) NCEP operational
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Track error major
findings:

(1) Experimental T382
GFS/EnKF beats NCEP
operational handily.

(2) Experimental T382
GFS/EnKF competitive
with ECMWF

(3) Experimental T382
GFS/EnKF has overall
spread-error calibration.
(4) FIM/EnKF not quite
as skillful as GFS/EnKF.
(5) CMC not as skillful,
but calibrated.

(6) UKMO not as skillful,
under-spread.
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Ellipse eccentricity analysis

Question: are errors larger in the direction where the ellipse is stretched out?
' — _ 1/2
X, = (xm) = Xps e Xy xl)/(nt — 1)

— — 1/2
X¢ ( Koty = Xgs = ,x¢(nt)—x¢)/(nt—1)

A = longitude, ¢ = latitude, nt = #tracked

F=XXT SAS 1 _SAST (SAI/Z)(SAUZ)T
E > should be consistent with <<‘X, .S, ‘>>

)

) = average over cases; ((+)) = average over cases, members

(
<‘ > should be consistent with << ;
S



(non-homogeneous)
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(non-homogeneous)
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(1) Along major axis of ellipse, consistent
average projection error of errors and
projection of members; spread well
estimated.

(2) Along minor axis of ellipse, slightly larger
projection of errors than projection of
members. Too little spread.

(3) Together, imply more isotropy needed.

(4) Still (dashed lines) some separation of

projection of error onto ellipses indicates
kthere is some skill in forecasting ellipticity.
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Mommum Wind Speed BICIS
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non-homogeneous; error bars are 5™, 95t percentiles of normal distribution fit to data.
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Source of rapid decrease of GFS/EnKF
wind speeds between day O and day 17

Day—1 forecast wind speed (ms™')

Day—0 analyzed wind speed (ms™)
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Rapid decrease in speed
of GFS/EnKF forecasts;
not so for GSlI initialized

But looking at analyzed
wind speeds, GFS/EnKF
produces appropriately
strong vortex, GSI does
not.



Increments in GFS/EnKF and GSI-
parallel to TCVitals SLP

Hurricane lke, 00 UTC 4 September 2008

(B) EnKF (A) GSI Parallel (prul2h)
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Change to EnKF initializes much deeper, tighter vortex; contours every 1 hPa.
But, model cannot support the analyzed storm at this resolution. 50



(a) Deterministic forecast track error
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Mean Error & Spread (km)

Mean Error & Spread (km)

(a) GFS/EnKF/T126 vs. GFS/EnKF/T382

- (112) (89) (76) (63) (57) (45) (38) (29) (25) (17) ]

GFS/EnKF/T382 spread
GFS/EnKF /1382 mean error
GFS/EnKF/T126 spread
GFS/EnKF/T126 mean error

2 3
Forecast Lead (Days)
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Trying to understand
effects of TCVitals,
EnKF, resolution,
ensemble averaging

modest impact on track forecast
from degrading the resolution
of the forecast (still T382 during
the data assimilation).

larger impact of GFS/EnKF at
<«—— 1126 vs. operational. However,
2009 operational version had
more diffusion, so that
complicates analysis.
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Tropical winds from parallel tests of
T190 GFS/GSI & GFS/EnKF

72-h 850 hPa Zonal Wind Anomaly Correlation (Tropics)
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EnKF provides better wind forecasts; better steering of tropical cyclones?
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Improvements next summer

 T574, new GFS physics.
* Assimilation of pos/intensity separately?

 Vortex relocation when 6-h forecast too far
off?

 TCVitals error estimates incorporated into
data assimilation?

Cat1l Cat 2 Cat 3 Cat4 Cat5
3.3 6.1 9.5 11.7 13.9 16.1 19.1

* table c/o Ryan Torn, U Albany



Conclusions

EnKF + high-resolution global model showed remarkable
success in 2009 season

— track forecasts competitive with state-of-the art ECMWEF forecast ensemble.
— track forecasts clearly better than NCEP, CMC operational, FIM.

— good consistency between ensemble spread and error.

— generally better tropical wind analyses.

— information on ellipticity of track positions useful

Improvement in TC forecasts likely due to increased model
resolution, EnKF, and TCVitals.

— however, forecast resolution had smaller impact when data assimilation with
hi-res EnKF

— TCVitals had small positive impact in GSI; parallel tests with/without in EnKF
not conducted. Presumed effect larger.
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Some Questions

improve methods for vortex initialization in EnKF. Incorporate
relocation in some cases?

methods for treating hurricane-related model error?
resolution impacts of global model in EnKF?

effect of assimilating position and intensity of TCVitals
separately?

will nesting of high-resolution regional EnKF and SREF
forecasts provide even better results?
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Now some improvement, ~ 6 - 9 hours lead.
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Multi-model
forecast?
Hurricane Bill

Initialized 00 UTC 19 August 20009.

What if we combine the forecasts
in some fashion, using their error
statistics?

(a) GFS/EnKF

(b) NCEP
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Proposed multi-model technique

* Estimate average absolute error g, , of the
ensemble-mean forecast for a given lead time
t and forecast model m, quasi-cross validated
(e.g., when estimating error for Bill, don’t use
Bill data, but ok to use every other storm).

e Set weights for every available member
forecast to be 1/0°,,

e Estimate weighted ensemble mean and
weighted ensemble covariance matrix.




An experimental multi-model product

Dot area is proportional
to the weighting applied
to that member

® = ens. mean position
* = observed position
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Multi-model error (GEFS/EnKF,
ECMWE, FIM, UKMO, CMC, NCEP)

NCEP T382 GEFS/EnKF vs. Multi—Model
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Not much improvement from multi-model. Why?



CRPSS

Multi-model 2-m temperature forecasts

All models (with 30-day bias correction)

& multi-model “TIGGE”
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collaborative work led by Renate Hagedorn, ECMWF; conditionally accepted, MWR

Lesson: discard less skillful models?
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Ensemble Position Error (km)
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Degradation relative to GFS/EnKF alone. Why?



FIM—mean longitudinal track error (km)

Correlation of errors, GFS/EnKF & FIM

(a) Day—1 longitudinal track error
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r is the Spearman rank correlation.

Multi-model forecasts generally predicated on the assumption that models

provide independent information. In this case, FIM errors are highly co-linear
with GFS/EnKF errors.



Correlation of errors, GFS/EnKF & ECMWF
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Less co-linearity of forecast errors between GFS/EnKF & ECMWEF systems; the
greater independence of their forecast errors permits a multi-model improvement.
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p,

suggests that multi-model forecast now has a bit too much spread in
directions of trailing eigenvectors. Also, the projection of error onto
the trailing eigenvector has decreased.
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54-h ensembles from

T382 GFS & EnKF initial conditions.

member 01 member 02 member 03 member 04

VU g

J) D

Intense vortices in
forecasts, with
ensembles of
forecast positions
relatively close

to the observed
position (red dot).
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54-h ensembles from experimental
T382 GFS & GSI / operational ET perturbations

GSI/ET ensemble 54-hr fcst from 2009080500

Note that GFS
model resolution
is much greater
than current
operational, T126

member 01 member 02 member 03 member 04

SAZ TN AL

GSI-ET initialized

ensemble
produces less
> TR intense vortices,
’ " ‘
= and forecasts are
B 5> slow in movin
\)/Q : 8

typhoon west.

T TE T
This operational
version of GSI did
not include
TCVitals central
pressure obs.

39
39




Notes:

Canonical EnKF

update equations (for time t)

X, = X€+K(yi —HX’Z) |
L Y, =¥YtYy,

K:PbHT(HPbHT+R)

Pb :XXT yZNN(O,R)

b b b b
X:(x1 -X ,....X —X )

(1) An ensemble of n parallel data assimilation cycles is conducted,
assimilating perturbed observations .

(2) Background-error covariances are estimated using the ensemble.



Propagation of state and error
covariances in EnKF

(P2 never

Po)=([x()-%()][x ()-% ()] ) e

Xf (t -+ 1) — MXla (t) if forecast model is “perfect”; M is

forward model operator

...or something similar,
if forecast model imperfect.



Perfect-model EnKF schematic

member 1
forecast

member 2 _
forecast

member 3
forecast

—— Observations —— Observations
#1 Perturbed #1 Perturbed
Observations Observations
EnKF member 1 Forecast member 1 __|
analysis > Model forecast EnkF
#2 Perturbed #2 Perturbed
Observations Observations
* (This schematic
EnKF member 2 Ff\)/fezait member 2 __| EnKF is a bit of an
analysis ode forecast inappropriate
simplification,
f
#3 Perturbed #3 Perturbed or EnKF uses
Observations Observations every member
to estimate
* background-
member 3 Forecast member 3 error covariances)
EnkF analysis P Model forecast .




All due credit
to Jeff Whitaker,
chief number
cruncher,
EnKF innovator
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Example: RMS error and AC, Z500

ECMWF T399 GFS/GSI-ET T126 GFS/EnKF T382

RMSE 500-mb

height, N. Hem. 32.35 39.98 36.22
RMSE 500-mb

height, N. Hem. 51.14 63.12 56.72

AC 500-mb height,

N. Hem. 0.888 0.832 0.854

AC 500-mb height,

N. Hem. 0.891 0.829 0.856

Table 1: Errors and anomaly correlations of forecasts from the 2009 operational ECMWF
T399 ensemble-mean forecasts, the operational GFS-based ensemble at NCEP (GSI initial
condition, T126 forecast model), and the experimental T382 GFS ensemble initialized with
the EnKF. All errors are measured with respect to the own products’s analysis, and all
verifications are performed on a 2.5-degree lat-lon grid. RMSE indicated the root-mean
square error, AC the anomaly correlation.
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Typhoon Morakot (Taiwan floods)

8/07 21:30

1000
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970

960
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940

08/04
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08/07 08/08

08/09
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Data availability

Sunday | Monday | Tuesday | Wednesday | Thursday | Friday | Saturday
Jul31:F | Aug1: F
2:FE 3:F 4:F 5:F 6: F.U 7:F 8:F
9:F 10: F,.G 11:F 12:F 13 14 15
16 17 18 19 20 21 22
23:U 24: F 25 26: G 27:F 28: F 29:F
30 31 Sep1:G 2 3 4:F 5
6 7:F 8 9 10 11 12
13 14 15:C 16 17 18 19
20 21 22 23:FE 24:F 25 26: E
27:EU 28: U

Table 1: Availability of 0000 UTC global ensemble forecast data between 31 July

2009 and 28 September 2009. For a particular date, “F” indicates that FIM

ensemble data was unavailable for this initial time; E indicates that ECMWF

ensemble was unavailable; U indicates UKMO; C indicates CMC; N indicates

NCEP, and G indicates experimental GEFS/EnKF.




54-h ensembles from

T382 GFS & EnKF initial conditions.

member 01 member 02 member 03 member 04

VU g

J) D

Intense vortices in
forecasts, with
ensembles of
forecast positions
relatively close

to the observed
position (red dot).
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Why the persistent under-forecast of the
strength of vortices?

AT COARSE RESOLUTION THE MODEL SIMPLY CANNOT
SUPPORT INTENSE VORTICES, EVEN IF PROPERLY ANALYZED

first-guess

subsequent
6-h forecast

EnKF, after
adjustment

to observations model reproduces

a vortex at the only

scales it can support
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(a) GFS/EnKF [perfeci—model]
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The ensemble Kalman Filter (EnKF)

e A method for the initialization of ensemble forecasts
that is conceptually appealing for hurricanes

— “Flow-dependent” background-error covariances may be
useful to achieving quality analyses
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