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Goal

 We'd like to find an objective and flexible
framework for characterizing (and ultimately
fixing) model structural errors

— Improve priors for data assimilation

— Inform stochastic prediction schemes
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This is easy...

* Lorenz 95 (40-variable) error in forcing F
* True F=8, model F=6
* gqisfree error parameter on RHS (a tendency on all X)).

=== 100 members

= 41 members State augmentation:

Histograms of 41 members
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But doing this in a real model can be much more difficult.
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Ensemble prediction-parameter rank
correlations from 60 forecasts

Maximum signinicance rate for parameter-varnable rank correlations

-mT 10-m Spd 2-m Q Accum. Precip

0.01 0.02 0.03 0.04

Difficult to find atmospheric parameters that are strongly correlation to easily

observable quantities near the surface (soil maybe easier).
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Parameters appear stochastic

AM =o(AT, +AT,, +0T,_, )—AM,,,

a(b+ c) = constant
a) Distribution of parameters in the
NOGAPS convective parameterization that
control the amount of moist air drawn
through the base of a convective cloud.
Solid curves show theoretical relationship
curves, points are optimized parameter
values. Different colors indicate different
convective regimes. Model is perfect.

b) As for a), but now with an imperfect
model where the cloud-based mass flux
parameters are being used to offset error
in the convective momentum transport. It
is possible to degrade the fidelity of the
model in order to improve its output (from
MIT PhD thesis of V. Khade).




Some recent success...

e Danforth and Kalnay (2008): low-dimensional
parameterization for tendency errors from forecast
errors.

* Posselt and Vukecevic 2010: transformations and
physical bounds helpful for estimating parameters.

* Nielsen-Gammon et al. (2010): linear and
distinguishable parameters in the PBL.
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Approach

Do the best job possible to produce a “map” from
one model to another. This is what we’ll try to
recover.

Find a basis that is compatible with the map with
estimable coefficients (parameters). Ensure that it
IS not restrictive.

Estimate the parameters and make sure that the
parameters are capturing the correct errors.

Test error estimates using EnKF assimilation.
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Construct error “map”

Use ANOVA to
quantify the
differences

WRF “truth” ,7 .~
L’

COAMPS model
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ANOVA Models

e Analysis of variance (ANOVA) models are a classical statistical technique for
studying whether a scalar outcome differs according to some categorical
variable or factor. The classic example is a clinical trial, where the factor is
drug/no drug.

* The main idea of the model is that we batch certain sets of observations
according to their expected values and then say that they have a common
(conditional) distribution. For example,

11d
WRF : X11,..., X1n, ~ N(ui,o0°)

COAMPS : Xo1,...,Xop, s N(M2702)

Test HQ - U1 = U2



XZI
_ X2 } |
ANOVA Models X 3
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e In a traditional ANOVA X12 5 Xa4
model, we decompose X; :
deviations from means %
of batches. &
| 2
Group

“Total” (3) ~ “Within group” (1)  “Between group” (2)
Compute test

(Xz'j — X) = ()(7/‘7 — X@) -+ (Xz — X) statistic based on

sums of squares.
OR, EQUIVALENTLY

Xij =X + (Xz — X) + (ij — Xz) Estimate the model
and test for main
!

Q; €ij effect.



Functional ANOVA models

e To model distributions of functions

— i models (WRF, COAMPS)
XU (s,) = H;(5,0) + &y (s,7) j ensemble members

Xij (s,1) = u(s,t)+ o, (s,t)+ £, (s,1) spatial location s

time ¢

e Assign spatially correlated Gaussian process
(flexible) prior to each, and fit the model and
correlations simultaneously
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Estimate free parameters instead of
physics-based parameters

No a priori mathematical constraints
(functional relationships between parameters)

No physics bounds (e.g. Posselt and Vukicevic
2010, and others)

Arbitrary degrees of freedom

Need to specify an appropriate functional
form, here guided by ANOVA results
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Add model terms (tendencies) g

We then estimate the coefficients a, of basis functions fto
limit the problem dimensionality to size k. Compare these
estimates to the ANOVA error model to determine success.
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Tests for successful estimation

* Apply corrections to prior (direct) or in
tendencies (e.g. Danforth and Kalnay 2008) in

cross-assimilation experiments (can also check
longer forecasts)

e Use ANOVA and look for small residuals (i.e.

good match between estimated errors and
known errors)
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Look for causality

* Tendencies from existing physics may help —
examine PBL tendency budget for terms that
cancel the free tendency (error) terms
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Scales and dimensions

Preliminary experiment goals:

— find the number of degrees-of-freedom that we can estimate reliably
(in the face of sampling error)

— find a set of bases for estimation

Approach:

— Introduce terms on the RHS (tendencies) that draw from known error
structures, guided by ANOVA

— In otherwise perfect-model experiments, estimate basis coefficients

Evaluation: compare estimates and imposed errors (again
ANOVA) and look for small residuals
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Nuts and bolts

96-member NOGAPS ensemble (created using
DART) for COAMPS and WRF LBCs

Start with Dx=30 km
Domain over E Asia and Sea of Japan

Stick to PBL winds, use layer-1 winds to start
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E.g.: estimating the wrong errors

Prior ensemble-mean error in U (m/s) Parameter estimate ¢(s).

Assimilating model has a U-tendency error of -0.0001 m s (known). Here | forgot
to apply the tendencies on the RHS, so the parameter estimates do not act on the
state. Initial parameter distributions are uniform random and constant in space.
These pictures are after 12 h, assimilating hourly.
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Parameter estimates
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Here RMSE is the RMS (parameter - 0.0001).
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Assimilation with deficient model

Model layer 1 Model layer 7

= RMSE None = RMSE None

= RMSE Assim U,V = RMSE Assim U,V ;
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Black is no assimilation, red is assimilating first-layer U,V hourly. Model is
deficient by 0.0001 m s*2. Initial spread (random spatially correlated
perturbations) is large, but initial error is only due to sampling error.
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