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Why do we need EDA in 4DVar?
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Why do we need EDA in 4DVar?

• The influence of the starting point of 
minimization wanes after ~ 3 days

• 4DVAr does not cycle error info, only the state 
estimate

• From a 4DVar perspective a longer assimilation 
window (≥ 3days) would suppress the need to 
cycle (error) information 
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Why do we need EDA in 4DVar?

• However:

1. An effective model error parametrization 
must be applied to reconcile model and 
measurements over a long analysis time 
window

2. We would still lack an estimate of analysis 
errors

Slide 7



Slide 8

Why do we need EDA in 4DVar?

What if we try to cycle the errors too? 

• Sequential approach (a.k.a. Kalman Filter): 

1. Assume Gaussian errors and linear error 
propagation 

2. Cycle state and errors estimates
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Why do we need EDA in 4DVar?

• However:

1. Dimension of state space O(107-108) makes full 
KF impracticable

2. Monte Carlo approx: EnKF, i.e., run a number 
O(100) of equi-probable realizations and use 
perturbations from the mean as errors

3. EnKF errors span the ensemble perturbations 
space -> rank deficiency -> localization, etc. 
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Hybrid systems

• Use of ensemble perturbations in a 3-4DVar 
analysis

• Cycle error information through ensemble DA

• Retain the implicit full rank error 
representation of 3-4DVar 

µεσον τε και αριστον
Aristotle, Nic. Ethics 2.6
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Hybrid systems

• Ensemble perturbations can be used in a 3-4DVar 
analysis in a number of different ways:

1. Use ensemble variances for observation QC

2. Use ensemble (co)variances as starting B matrix of 
minimization (often in linear combination with 
climatological B, extra control variable)

3. Use of ensemble covariances inside 4DVar 
minimization (En4DVAR)

Why do we need EDA in 4DVar?
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“When simulating the error evolution of the 
reference system one should use the reference gain 
matrix K” (Berre et al. 2007) 

The ECMWF EDA system

  KyxKHIx  fa

  ofa KeeKHIe 
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This is what a cycled ensemble of 4DVar analyses 
with random observation and SST perturbations 
does!

The ECMWF EDA system

  ofa KεεKHIε 
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10 ensemble members using 4D-Var assimilations
T399 outer loop, T95/T159 inner loop (reduced number of 

iterations)
Observations randomly perturbed
Cloud track wind (AMV) correlations taken into account
SST perturbed with realistically scaled structures
Model error represented by stochastic methods (SPPT, 

Leutbecher, 2009)

All 107 conventional and satellite observations used

The ECMWF EDA system

from: Lars Isaksen
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The ECMWF EDA system

from: Lars Isaksen

1. EDA is a ‘Stochastic EnKF’ with ‘stochastic physics’ based 
model error representation.

2. EDA does not use the ensemble mean and does not 
compute an ensemble analysis. 

3. EDA is ‘only’ used for flow-dependent covariance evolution

4. EDA avoids the localization problems by including the 
(costly) 4D-Var analysis step.
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• We start with the diagonal of the Pf matrix, i.e.:

“Estimate the first guess error variances with 
the StDev of the EDA short range forecasts”

• This has been tried before (Kucukkaraca and Fisher, 
2006, Fisher 2007, Isaksen et al., 2007) but results 
have been inconclusive

The ECMWF EDA system
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What raw ensemble variances look like? 

Vorticity StDev, ml64 (500hPa)          

The ECMWF EDA system
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• Ensemble spread seems well correlated with 
expected error around dynamically active regions
but:

Noise level of forecast ensemble is high

The ECMWF EDA system
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• Noise level is due to sampling errors: 10 member
Ensemble

• EDA is a stochastic system: Variance errors ~ 1/Nens

• We need a system to effectively filter out noise
from first guess ensemble forecast variances

The filtering problem
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The filtering problem

“Mallat et al.: 1998, Annals of Statistics, 26,1-47”
Define Ge(i) as the random component of the sampling 
error in the estimated ensemble variance at gridpoint 
i:

Then the covariance of the sampling noise can be 
shown to be a simple function of the ensemble error
covariance:

(1)
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The filtering problem

“Mallat et al.: 1998, Annals of Statistics, 26,1-47”
A consequence of (1) is that:

(2)

i.e., there is scale separation between noise error 
correlation and ensemble error correlation 

=>
we can use a spectral filter to disentangle the two

Is this the case?
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The filtering problem

Slide 24



Slide 25

The filtering problem
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The filtering problem

• There is indeed a scale separation between signal 
and sampling noise!

• Truncation wavenumber is determined by maximizing
signal-to-noise ratio of filtered variances (details 
in Raynaud et al., 2009, and forthcoming Tech. 
Memo) 

• Optimal truncation wavenumber depends on 
parameter and model level

Slide 26



Slide 27

The filtering problem

Raw Ensemble StDev
VO ml64

Filtered Ensemble StDev
VO ml64
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The filtering problem

Is Filtering the Ensemble Variances enough to 
improve the analysis?

Not really…

N.Hem. Z 500hPA AC S.Hem. Z 500hPA AC
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The calibration problem

Is the ensemble fg statistically calibrated?

A reliable ensemble satisfies:

Mean_Errord_Ens_Square_VarianceEns
11

1111
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The calibration problem

Is the ensemble fg statistically calibrated?

• Previous studies had highlighted the under-
dispersiveness of the ensemble fg variance and 
tried to correct it with one global inflation 
factor

• The situation is more complicated…
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The calibration problem

Vorticity ml 30 (~50hPa)
Ensemble Error                                                  Ensemble Spread

Spread - Error
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The calibration problem

Vorticity ml 78 (~850hPa)
Ensemble Error                                                  Ensemble Spread

Spread - Error
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The calibration problem

Is the ensemble fg statistically calibrated?

• Calibration factors needs to be model level, 
latitude and parameter dependent

• Calibration factors seems also to be flow-
dependent, i.e. depend on the size of the 
expected error
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The calibration problem
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The calibration problem

• Calibration factors need to be flow-dependent, 
too! 

• Do they also change in time?

Slide 35



Slide 36

The calibration problem
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The calibration problem
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The calibration problem

• There is not a large day-to-day variability but 
seasonal variability is important

• General solution: slowly varying adaptive 
calibration
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4DVar assimilation with EDA variances

Deterministic DA experiments with EDA variances
1. CY35r3_esuite, T799L91, 7/01 – 16/02 2009

2. Control f8a4
3. Experiment fb4k with ensemble DA variances:

a) Calibration step: adaptive, flow-dependent, 
regionally varying, for each parameter and model 
level

b) Filtering step: “Optimal” spectral filtering
c) EDA variances are used both in observation QC and 

start of 4DVar minimization (preconditioning)
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4DVar assimilation with EDA variances
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4DVar assimilation with EDA variances

N.HEM Z ac
Jan-Feb
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4DVar assimilation with EDA variances

S.HEM Z ac
Jan-Feb
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4DVar assimilation with EDA variances

TROP. VW RMSE
Jan-Feb
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4DVar assimilation with EDA variances

Filtered + Calibrated EDA 

Filtered EDA 
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• Use of flow dependent EDA variances does 
improve the deterministic scores!

• A careful post-processing step of the raw 
ensemble first guess forecast is necessary to:

a) Filter sampling noise 

b) Adaptively calibrate the ensemble

Preliminary Conclusions
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• Improvement possibly linked to better OBS QC 
decisions, given 4DVar relative insensitivity to 
initial BG variances (Fisher, 2003)

• Further improvements in model error 
parameterizations will directly benefit the 
system

• Increase in ensemble size will benefit the system
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WHERE NEXT

• Operational implementation and testing

• Further tuning of system at full operational 
resolution (T1279L91)

• Generalize the use of EDA variances to 
unbalanced components of control vector  
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WHERE NEXT

• Investigate the impact of EDA size increases on 
deterministic analysis
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Medium term:

• Refine the representation of initial uncertainties
(correlated perturbations, surface fields 
uncertainties) in stochastic EDA

• Evaluate EnKF covariances 

• Further develop the hybridization of 4DVar with 
EDA (investigate the use of EDA covariances) 
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ECMWF ENKF

People: Mats Hamrud, 

Massimo Bonavita, 

David Tan,             

+ Jeff Whitaker (consultant)
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ECMWF ENKF

Motivation: 

1. EnKF is currently the only viable alternative to 
4DVar for operational NWP. EnKF applications 
(Canada, Japan) have almost reached similar 
quality to 4DVar

2. Computational scalability of 4DVar is limited, of 
EnKF almost perfect  
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ECMWF ENKF

Motivation: 

3. Test the benefit of a hybrid EnKF/4DVar 
assimilation system (vs Ensemble of 4DVar 
DA/4DVar)

4. Interest in EnKF method for ERA CLIM project 
of early 20th century reanalysis using surface 
observations only
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ECMWF ENKF

Plans: 

1. Implement a square root type EnKF (EnSRF and 
LETKF)

2. Implementation to take advantage of future 
massively parallel architectures: minimize 
communication (“High latency implementation”, 
Anderson and Collins, 2007)
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ECMWF ENKF

High latency implementation, Anderson and Collins, 2007

1. Advance the model ensemble to analysis time;
2. Compute all the observation priors (Hx) ;
3. Assign to each processor a number of spatially contiguous 

grid points (for load balancing purposes the number of 
grid points assigned per processor should be inversely 
proportional to the local observation density);

4. Each processor is sent the complete ensemble state of its 
grid points plus all the observations and observation 
priors inside the „influence region“;

5. Analysis can be computed independently on each 
processor grid point by grid point

6. The updated ensemble states are collected from each 
processor.
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ECMWF ENKF

Status: 

1. Project started in late January 2010, is under 
active (part time!) development
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Thanks for your attention!

I welcome your questions/comments…
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