

Hybrid Variational/Ensemble Data Assimilation

Dale Barker, Adam Clayton, and Andrew Lorenc 4th EnKF Workshop, 7 April 2010

© Crown copyright Met Office

Met Office

Observation Volumes in 6 hours (20/10/08)

Increased resolution=>Increased **Obs usage**

Category	Count	%	Category	Count	%
		used			used
TEMPs	637	99%	Satwinds: JMA	26103	4%
PILOTs	307	99%	Satwinds: NESDIS	142478	3%
Wind Profiler	1355	39%	Satwinds: EUMETSAT	220957	1%
Land Synops	16551	99%	Scatwinds: Seawinds	436566	1%
Ships	3034	84%	Scatwinds: ERS	27075	2%
Buoys	8727	63%	Scatwinds: ASCAT	241626	4%
Amdars	64147	23%	SSMI/S	532140	1%
Aireps	7144	12%	SSMI	698048	1%
GPS-RO	776	99%	ATOVS	1127224	3%
			AIRS	75824	6%
			IASI	80280	3%

Computational Cost (4 nodes IBM Power 6)

Component	4D-Var Inner- Loop	MOGREPS (N=24)	Nonlinear model	
Resolution (km)	~120km	~90km	~40km	
Wall-Clock (W mins)	7*	75	48	
Forecast Range (F hrs)	6	72	168	
W/F (mins/hr)	1.17	1.04	0.29	

- Conclude 4D-Var / 24 member Ensemble Filter costs similar.
- Operational advantages of ensemble DA in cost-comparison:
 - Operational ensemble partly 'paid for' (but still costs for research/trialling).
 - Ensemble forecasts can be run ahead of obs. cut-off, 4D-Var usually waits.
- Scalability of 4D-Var on next generation machines (10⁵ processors) a concern.

Hybrid Variational/Ensemble DA Via The 'Alpha Control Variable' Method

• Vector of Ensemble Perturbations
$$\delta \mathbf{X}_f = (\delta \mathbf{x}_{f1}, \delta \mathbf{x}_{f2}, ..., \delta \mathbf{x}_{fN})$$

• Hybrid analysis increment defined as

$$\delta \mathbf{x}_0 = \delta \mathbf{x}_{clim} + \delta \mathbf{x}_{flow-dep} = \mathbf{B}^{1/2} \mathbf{v} + \delta \mathbf{X}_f \circ \mathbf{a}$$

• Ensemble weights **a** constrained by an additional cost-function

$$J = \frac{W_b}{2} \delta \mathbf{x}_0^T \mathbf{B}^{-1} \delta \mathbf{x}_0 + \frac{W_a}{2} \mathbf{a}^T \mathbf{A}^{-1} \mathbf{a} + \frac{1}{2} \sum_{i=0}^n \left[\mathbf{H}_i \delta \mathbf{x}(t_i) - \mathbf{d}_i \right]^T \mathbf{R}_i^{-1} \left[\mathbf{H}_i \delta \mathbf{x}(t_i) - \mathbf{d}_i \right]$$

Variance conservation implies $\frac{1}{W_b} + \frac{1}{W_a} = 1$

• $W_b=1$ is standard 3/4D-Var. $W_b=0$ fully ensemble covariance (e.g. Liu et al 2008, Buehner et al 2009). Hybrid is the space in-between!

© Crown copyright Met Office Dale Barker

Comments on The ACV Method

• 'Incremental, balance-aware' covariance localization is trivial, e.g.

$$\delta \boldsymbol{\psi}_0 = \delta \boldsymbol{\psi}_{c \, \text{lim}} + \delta \boldsymbol{\psi}_f \circ \mathbf{a} \quad \delta \boldsymbol{\chi}_{u0} = \delta \boldsymbol{\chi}_{uc \, \text{lim}} + \delta \boldsymbol{\chi}_{uf} \circ \mathbf{a}$$

- Covariance A equivalent to model-space covariance localization (Lorenc 2003).
- Localization defined adaptively or empirically, e.g.

$$\mathbf{a} = \mathbf{A}^{1/2} \boldsymbol{\alpha} \equiv \boldsymbol{\sigma}_{\alpha}^2 \mathbf{A}_{\nu} \mathbf{A}_{h} \boldsymbol{\alpha}$$

- **A=I** implies no localization. Only need one scalar per ensemble member.
- Convenient to use standard control variable transforms for localization operators A_v, A_h, but not essential.

• Example: Truncated power spectrum from empirical correlation with scale L:

A_v: Vertical Covariance Localization

Met Office

Example: Gaussian with leveldependent localization scale:

$$\rho(k - k_c) = \exp\left[-\left(k - k_c\right)^2 / L_c^2\right] \\ L_c = 20k_c / 41$$

Conclusion: 75% data compression via use of EOFs for covariance localization © Crown copyright Met Office Dale Barker

ACV Single ob test (250hPa u, O-B=1m/s, sigma_o=3.3m/s)

Impact of Vertical Localization

ACV Single ob test (250hPa u, O-B=1m/s, sigma_o=3.3m/s)

Impact of Vertical + Horizontal Localization

4D-Var Increment (middle of 6hr time window) Ensemble Increment, $A=A_h$

3/4D-Var Hybrid Trial Configurations (Adam Clayton)

T+3

03Z

06Z

T+9

09Z

12Z

T+3

15Z

18Z

T+9

21Z

Global ~90km L38 model
Incremental 3/4D-Var (~120km)
24m ETKF ensemble (~90km)
4D=Var

21Z

00Z

- **Trial period**: 5 31st May 2008
- **Observations:** Surface, Scatwind, Satwind, Aircraft, Sonde, ATOVS, SSMI, AIRS, GPSRO, SSMIS, IASI
- Hybrid configuration:
 - Localization: 1500km (T10) Gaussian. Horizontal only. 'Balance-aware'.
 - Climatological/Ensemble Covariances Given Equal Weight ($W_b=2$).
 - No tuning as yet!

© Crown copyright Met Office Dale Barker

May 2008 3/4D-Var Trial Results

VERIFICATION VS OBSERVATIONS

OVERALL CHANGE IN NWP INDEX = 0.889

VERIFICATION VS ANALYSIS OVERALL CHANGE IN NWP INDEX = 1.114 20[OVERALL PERCENTAGE CHANGE IN RMSE = -25.070 PERCENTAGE CHANGE IN RMSE 3D-Var 10 W850 W850 H500 W850 500 ٨S H500 N25(PMSI PMSI 500 PMS W25I PMS 150 -20 SHEM NHEM TROP © Crown copyright Met Office Dale Barker

VERIFICATION VS OBSERVATIONS OVERALL CHANGE IN NWP INDEX = -0.022 20 OVERALL PERCENTAGE CHANGE IN RMSE = -5.430 PERCENTAGE CHANGE IN RMSE 4D-Var 10 F n PMS ß MS -20 NHEM TROP SHEM VERIFICATION VS ANALYSIS OVERALL CHANGE IN NWP INDEX = 0.696 20

Hybrid Results Summary

- Hybrid demonstrated with model-space, 3D, 'balance-aware' localization.
- Hybrid shown to compensate for rank-deficiency in ensemble covariance.
- First tests of impact of hybrid in a full observation 3/4D-Var: Positive benefit vs. 3D-Var mode, neutral in 4D-Var. Pleasing result given no tuning yet.
- Putting things in perspective:

Impact on NWP Index	3D-Var Hybrid vs. 3D-Var	4D-Var Hybrid vs. 4D-Var	4D-Var vs. 3D-Var
Verification vs. Obs	+0.78%	-0.39%	+2.7%
Verification vs. Analysis	+0.94%	+1.33%	+1.3%

© Crown copyright Met Office Dale Barker

Convergence Of 3D-Var Cost Function

Conclusion: Ensemble covariances from 24 member ETKF are significantly rank-deficient, and underfitting observations. Hybrid helps.

Estimation of Ensemble Sampling Error

Method: Simulate ensemble by sampling climatological **B**. Study effect of ensemble size, localization, hybrid on minimization.

Conclusion: Pure ensemble covariance significantly rank-deficient, even with larger ensembles, and shorter localization scales. Hybrid vital!

• Cause is large-scale increments within the MOGREPS modes, which get projected onto the localisation scale:

• Mean p1 increment alone explains significant proportion of imbalance:

• Fix: Remove scales larger than the localisation scale from the error modes.

- Results for single outer loop.
- Operational wall-clock time is ~10 minutes.
- Algorithmic changes required to maintain affordability after 2012 upgrade.

Data: Rick Rawlins

- Algorithmic changes 1: Hessian preconditioning, GCR mods, etc.
 - Default N216 4D-Var = ~21mins
 - Optimized N216 4D-Var = ~13mins.
- Algorithmic changes 2: 'Multigrid' 4D-Var:
 - T-60mins: 4D-Var (120km), T-30mins: 4D-Var (75km)
 - Finally at T+0: 4D-Var (50km <10 iterations)
 - Permits affordable N320 4D-Var for 2011 computer upgrade.
 - After that, all bets are off!

Met Office

Hybrid Summary

- MetO hybrid implementation similar to WRF (ACV method) but first application in 4D-Var and full observation system.
- Results indicate hybrid improves 3D-Var. Neutral in 4d-Var mode. Note: no tuning so far.
- Studies indicated localization imbalance remains a problem hybrid needs to be scale-selective.
- MetO short/medium term strategy for coupled variational/ensemble DA but may need to look at more significant changes long-term (>5 yrs).

© Crown copyright Met Office